{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Timeseries at polygons \n", "\n", "This notebook shows how to extract precipitation rate timeseries from MRMS GRIB2 files for specific geographical areas." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import geopandas as gpd\n", "from shapely.geometry import Polygon\n", "from pandas import Timestamp, Timedelta\n", "\n", "import emaremes as mrms" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, we download hourly precipitation rate data during Hurricane Helene in September 2024:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Prefered path to store *new* Gribfiles is data\n" ] } ], "source": [ "mrms.fetch.path_config.set_prefered(\"./data\")\n", "\n", "gribfiles = mrms.fetch.timerange(\n", " Timestamp(\"2024-09-26T12:00:00\"),\n", " Timestamp(\"2024-09-28T00:00:00\"),\n", " frequency=Timedelta(minutes=60),\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We define three rectangular polygons spanning different latitudes to analyze precipitation patterns:\n", "\n", "- Rect_0: 38°N-40°N, 85°W-83°W\n", "- Rect_1: 35°N-37°N, 85°W-83°W \n", "- Rect_2: 32°N-34°N, 85°W-83°W" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Rectgeometry
0Rect_0POLYGON ((-85 38, -85 40, -83 40, -83 38, -85 ...
1Rect_1POLYGON ((-85 35, -85 37, -83 37, -83 35, -85 ...
2Rect_2POLYGON ((-85 32, -85 34, -83 34, -83 32, -85 ...
\n", "
" ], "text/plain": [ " Rect geometry\n", "0 Rect_0 POLYGON ((-85 38, -85 40, -83 40, -83 38, -85 ...\n", "1 Rect_1 POLYGON ((-85 35, -85 37, -83 37, -83 35, -85 ...\n", "2 Rect_2 POLYGON ((-85 32, -85 34, -83 34, -83 32, -85 ..." ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "polygons = {\n", " \"Rect_0\": Polygon.from_bounds(-85, 38, -83, 40),\n", " \"Rect_1\": Polygon.from_bounds(-85, 35, -83, 37),\n", " \"Rect_2\": Polygon.from_bounds(-85, 32, -83, 34),\n", "}\n", "\n", "gdf = gpd.GeoDataFrame(polygons.keys(), geometry=list(polygons.values()), columns=[\"Rect\"], crs=\"EPSG:4326\")\n", "gdf" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The polygons are plotted on a map to show their geographical locations, using the `explore` method of the GeoDataFrame." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Make this Notebook Trusted to load map: File -> Trust Notebook
" ], "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "gdf.explore(\n", " column=\"Rect\",\n", " categorical=True,\n", " zoom_start=5,\n", " cmap=\"Dark2\",\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Extract timeseries\n", "\n", "We can extract precipitation rate values for each polygon:\n", "\n", "1. From a single file (one timestamp)\n", "2. From all files to create a complete timeseries\n", "\n", "For a single file, we obtain a tuple with the timestamp and the mean precipitation rate values:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(np.datetime64('2024-09-27T11:00:00.000000000'),\n", " {'Rect_0': 1.7448673248291016,\n", " 'Rect_1': 2.15366268157959,\n", " 'Rect_2': 3.3074347972869873})" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mrms.ts.polygon.query_single_file(gribfiles[23], gdf.set_index(\"Rect\"))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This same could have been done with xarray's `open_dataset` function. For multiple times, we could use `xr.open_mfdataset` and concatenate the GRIB files in the date dimension. However, for a large number of timesteps, this is slower than using `ts.polygon.query_files`. " ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Rect_0Rect_1Rect_2
timestamp
2024-09-26 12:00:00+00:000.0255352.0043353.394098
2024-09-26 13:00:00+00:000.0500472.3368123.984890
2024-09-26 14:00:00+00:000.0542402.4502603.343230
2024-09-26 15:00:00+00:000.1676172.0705173.131488
2024-09-26 16:00:00+00:000.3215931.7840283.234480
2024-09-26 17:00:00+00:000.3169051.6045853.798618
2024-09-26 18:00:00+00:000.2173521.4312174.528488
2024-09-26 19:00:00+00:000.1647451.5116705.032995
2024-09-26 20:00:00+00:000.2643271.9034724.187413
2024-09-26 21:00:00+00:000.2943532.0891334.942948
2024-09-26 22:00:00+00:000.1757072.1467834.570075
2024-09-26 23:00:00+00:000.1219272.1463903.430357
2024-09-27 00:00:00+00:000.2144322.0811623.747465
2024-09-27 01:00:00+00:000.2616222.5263375.651672
2024-09-27 02:00:00+00:000.3793122.1823104.780615
2024-09-27 03:00:00+00:000.6047082.5454256.274500
2024-09-27 04:00:00+00:000.7462752.6963735.673342
2024-09-27 05:00:00+00:000.7533622.9234405.875688
2024-09-27 06:00:00+00:000.8923223.0682487.670566
2024-09-27 07:00:00+00:001.5587302.7735079.282417
2024-09-27 08:00:00+00:002.1820552.5480487.422433
2024-09-27 09:00:00+00:001.8320453.3798906.314767
2024-09-27 10:00:00+00:001.6716232.5802904.750607
2024-09-27 11:00:00+00:001.7448672.1536633.307435
2024-09-27 12:00:00+00:001.7918052.8902900.829160
2024-09-27 13:00:00+00:002.0513502.7056400.091732
2024-09-27 14:00:00+00:002.2050352.2350870.012025
2024-09-27 15:00:00+00:002.1418531.2096770.000000
2024-09-27 16:00:00+00:004.0060720.5282780.000458
2024-09-27 17:00:00+00:004.8997000.4470500.001175
2024-09-27 18:00:00+00:005.2791020.2184680.000000
2024-09-27 19:00:00+00:006.7931830.1204200.000000
2024-09-27 20:00:00+00:003.6192450.0336250.000000
2024-09-27 21:00:00+00:004.5934270.0160600.000000
2024-09-27 22:00:00+00:003.0916570.0006480.000000
2024-09-27 23:00:00+00:002.4261830.0017170.000000
2024-09-28 00:00:00+00:001.6631220.0132100.000000
\n", "
" ], "text/plain": [ " Rect_0 Rect_1 Rect_2\n", "timestamp \n", "2024-09-26 12:00:00+00:00 0.025535 2.004335 3.394098\n", "2024-09-26 13:00:00+00:00 0.050047 2.336812 3.984890\n", "2024-09-26 14:00:00+00:00 0.054240 2.450260 3.343230\n", "2024-09-26 15:00:00+00:00 0.167617 2.070517 3.131488\n", "2024-09-26 16:00:00+00:00 0.321593 1.784028 3.234480\n", "2024-09-26 17:00:00+00:00 0.316905 1.604585 3.798618\n", "2024-09-26 18:00:00+00:00 0.217352 1.431217 4.528488\n", "2024-09-26 19:00:00+00:00 0.164745 1.511670 5.032995\n", "2024-09-26 20:00:00+00:00 0.264327 1.903472 4.187413\n", "2024-09-26 21:00:00+00:00 0.294353 2.089133 4.942948\n", "2024-09-26 22:00:00+00:00 0.175707 2.146783 4.570075\n", "2024-09-26 23:00:00+00:00 0.121927 2.146390 3.430357\n", "2024-09-27 00:00:00+00:00 0.214432 2.081162 3.747465\n", "2024-09-27 01:00:00+00:00 0.261622 2.526337 5.651672\n", "2024-09-27 02:00:00+00:00 0.379312 2.182310 4.780615\n", "2024-09-27 03:00:00+00:00 0.604708 2.545425 6.274500\n", "2024-09-27 04:00:00+00:00 0.746275 2.696373 5.673342\n", "2024-09-27 05:00:00+00:00 0.753362 2.923440 5.875688\n", "2024-09-27 06:00:00+00:00 0.892322 3.068248 7.670566\n", "2024-09-27 07:00:00+00:00 1.558730 2.773507 9.282417\n", "2024-09-27 08:00:00+00:00 2.182055 2.548048 7.422433\n", "2024-09-27 09:00:00+00:00 1.832045 3.379890 6.314767\n", "2024-09-27 10:00:00+00:00 1.671623 2.580290 4.750607\n", "2024-09-27 11:00:00+00:00 1.744867 2.153663 3.307435\n", "2024-09-27 12:00:00+00:00 1.791805 2.890290 0.829160\n", "2024-09-27 13:00:00+00:00 2.051350 2.705640 0.091732\n", "2024-09-27 14:00:00+00:00 2.205035 2.235087 0.012025\n", "2024-09-27 15:00:00+00:00 2.141853 1.209677 0.000000\n", "2024-09-27 16:00:00+00:00 4.006072 0.528278 0.000458\n", "2024-09-27 17:00:00+00:00 4.899700 0.447050 0.001175\n", "2024-09-27 18:00:00+00:00 5.279102 0.218468 0.000000\n", "2024-09-27 19:00:00+00:00 6.793183 0.120420 0.000000\n", "2024-09-27 20:00:00+00:00 3.619245 0.033625 0.000000\n", "2024-09-27 21:00:00+00:00 4.593427 0.016060 0.000000\n", "2024-09-27 22:00:00+00:00 3.091657 0.000648 0.000000\n", "2024-09-27 23:00:00+00:00 2.426183 0.001717 0.000000\n", "2024-09-28 00:00:00+00:00 1.663122 0.013210 0.000000" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = mrms.ts.polygon.query_files(gribfiles, gdf.set_index(\"Rect\"))\n", "df" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAHRCAYAAAB0AYPVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAo05JREFUeJzs3Xd8k/X2wPFPkqZ779IWyi6UvYcsRRAnigPFeRXHFefluq/rKrj1Jy70OnDiFgUVUBRlzzJadlsKLd17t8nz++NpQssoTZv0SdrzvjevphnPc1pLcvL9nu/56hRFURBCCCGEcCF6rQMQQgghhLCVJDBCCCGEcDmSwAghhBDC5UgCI4QQQgiXIwmMEEIIIVyOJDBCCCGEcDmSwAghhBDC5UgCI4QQQgiX46bFSc1mM5mZmfj5+aHT6bQIQQghhBA2UhSF0tJSOnXqhF6v7RiIJglMZmYmsbGxWpxaCCGEEK105MgRYmJiNI1BkwTGz88PUH8B/v7+WoQghBBCCBuVlJQQGxtrfR/XkiYJjGXayN/fXxIYIYQQwsU4Q/mHFPEKIYQQwuVIAiOEEEIIlyMJjBBCCCFcjiY1MEIIIURTFEWhrq4Ok8mkdSgdisFgwM3NzSlqXM5EEhghhBBOpaamhmPHjlFRUaF1KB2St7c3UVFRuLu7ax1KkySBEUII4TTMZjOpqakYDAY6deqEu7u7S4wGtAeKolBTU0Nubi6pqan07NlT82Z1TZEERgghhNOoqanBbDYTGxuLt7e31uF0OF5eXhiNRg4fPkxNTQ2enp5ah3RazptaCSGE6LCc+ZN/e+cqv3vXiFIIIYQQogFJYIQQQgjhciSBEUIIIYTLkQRGCCGEsIMbb7wRnU6HTqfDaDTStWtXHnjgAaqqqux2/OnTp9v0nIKCAmbNmoW/vz+BgYHcfPPNlJWV2SUerUkCI4TQnMls4pv933Cs7JjWoQjRKueddx7Hjh0jJSWFV199lYULF/LEE09oFs+sWbNISkpi5cqVLF26lL/++otbb71Vs3jsSRIYIYTmfjj4A0+tf4rnNj2ndSjCCSmKQkVNnSYXRVFsitXDw4PIyEhiY2OZPn06kydPZuXKlYDa42b+/Pl07doVLy8vBg4cyDfffNPo+UlJSVx44YX4+/vj5+fHuHHjOHToEE8++SSLFi1iyZIl1lGeP//8s8lY9uzZw6+//sr//vc/Ro4cyVlnncWCBQtYvHgxmZmZNv1czkj6wAghNLcxayMAibmJKIoijctEI5W1Jvo+vlyTcyc/PRVv95a9Ve7evZt169bRpUsXAObPn8+nn37KO++8Q8+ePfnrr7+49tprCQsLY8KECWRkZDB+/HgmTpzIqlWr8Pf3Z+3atdTV1TF37lz27NlDSUkJH374IQDBwcFNnn/9+vUEBgYybNgw622TJ09Gr9ezceNGLr300hb9XM5CEhghhKYURWFb9jYACqoKyCrPIso3SuOohGiZpUuX4uvrS11dHdXV1ej1et544w2qq6uZN28ev/32G6NHjwagW7durFmzhoULFzJhwgTefPNNAgICWLx4MUajEYBevXpZj+3l5UV1dTWRkZHNiiUrK4vw8PBGt7m5uREcHExWVpadfmLtSAIjhNDUsfJjZFdkW7/fnb9bEhjRiJfRQPLTUzU7ty0mTZrE22+/TXl5Oa+++ipubm7MmDGDpKQkKioqOPfccxs9vqamhsGDBwOQmJjIuHHjrMmLaJokMEIITW3N3tro+6S8JM7tcu5pHi06Ip1O1+JpnLbm4+NDjx49APjggw8YOHAg77//Pv369QNg2bJlREdHN3qOh4cHoI6w2FNkZCQ5OTmNbqurq6OgoKDZozjOzDX+IoQQ7db2nO0ABHsGU1BVQFJ+ksYRCWEfer2eRx55hPvvv5/9+/fj4eFBeno6EyZMOOXjBwwYwKJFi6itrT3lKIy7uzsmk6nZ5x89ejRFRUVs3bqVoUOHArBq1SrMZjMjR45s2Q/lRGQVkhBCU5b6l6t6XwVAUn6SzSs/hHBWV1xxBQaDgYULFzJ37lzuu+8+Fi1axKFDh9i2bRsLFixg0aJFAMyZM4eSkhJmzpzJli1bOHDgAJ988gn79u0DIC4ujp07d7Jv3z7y8vKora1t8tx9+vThvPPOY/bs2WzatIm1a9cyZ84cZs6cSadOnRz+szuaJDBCCM0UVRVxqPgQAFf0ugJ3vTulNaUcKT2icWRC2Iebmxtz5szhhRde4OGHH+Y///kP8+fPtyYXy5Yto2vXrgCEhISwatUqysrKmDBhAkOHDuW9996zjsbMnj2b3r17M2zYMMLCwli7du0Zz//ZZ58RHx/POeecw/nnn89ZZ53Fu+++69Cfua3oFA0+6pSUlBAQEEBxcTH+/v5tfXohhJP4I/0P7v7jbroFdGPJ9CXMWjaLnXk7eX7c85zf7XytwxMaqKqqIjU1la5du+Lp6al1OB1SU/8NnOn9W0ZghBCasdS/DA5XV2H0DekLIHUwQogzkgRGCKGZbTlq/cvQCLXAMCE0AZAERojmmDdvHr6+vqe8TJs2TevwHE5WIQkhNFFVV2VNVCwjMP1C1KWmyfnJmMwmDHrbenAI0ZHcfvvtXHnllae8z95Lsp2RJDBCCE3syttFnbmOcO9won3VvhhdA7ri5eZFZV0laSVpdA/srnGUQjiv4ODgM24n0J7JFJIQQhOW5dNDwodY9z4y6A30Ce4DwO683ZrFJoRwfpLACCE0YSngHRIxpNHtUgcjhGgOSWCEEG3OZDaRmJsIqCMwDSWESAIjhDgzSWCEEG1uf+F+ymvL8TX60iOwR6P7+oWqhbz7CvZRa26606gQouOSBEYI0eYsy6cHhQ86aaVRrF8sfkY/qk3VHCo6pEV4QggXIAmMEKLNNSzgPZFep6dvqNrQTgp5hRCnIwmMEKJNKYpiHYE5sYDXQupghCu68cYb0el06HQ6jEYjXbt25YEHHqCqqspux58+fbpNz3n22WcZM2YM3t7eBAYG2iUOZyEJjBCiTR0tPUpeZR5GvdFa73IiawKTJwmMcC3nnXcex44dIyUlhVdffZWFCxfyxBNPaBZPTU0NV1xxBXfccYdmMTiKJDBCiDZlGX3pF9oPD4PHKR9jSWwOFB6g2lTdZrEJJ6UoUFOuzcXG/Y49PDyIjIwkNjaW6dOnM3nyZFauXAmA2Wxm/vz5dO3aFS8vLwYOHMg333zT6PlJSUlceOGF+Pv74+fnx7hx4zh06BBPPvkkixYtYsmSJdZRnj///POM8Tz11FPcd9999O/f36afwxVIJ14hRJuyJDCW7QNOJconiiCPIAqrC9lfsJ/+Ye3vxVfYoLYC5nXS5tyPZIK7T4ueunv3btatW0eXLl0AmD9/Pp9++invvPMOPXv25K+//uLaa68lLCyMCRMmkJGRwfjx45k4cSKrVq3C39+ftWvXUldXx9y5c9mzZw8lJSV8+OGHAB26Cy9IAiOEaGOWAl7LBo6notPpSAhNYE3GGnbn75YERriMpUuX4uvrS11dHdXV1ej1et544w2qq6uZN28ev/32G6NHjwagW7durFmzhoULFzJhwgTefPNNAgICWLx4MUajEYBevXpZj+3l5UV1dTWRkZGa/GzORhIYIUSbya/MJ60kDR06BoYNbPKxCSFqAiN1MAKjtzoSotW5bTBp0iTefvttysvLefXVV3Fzc2PGjBkkJSVRUVHBueee2+jxNTU1DB6sjkYmJiYybtw4a/IimiYJjBCizSTmJALQI6gHAR4BTT5WViIJK52uxdM4bc3Hx4cePdTmjB988AEDBw7k/fffp18/ta5r2bJlREdHN3qOh4daC9YRdpC2J0lghBBtZmvOVuDU/V9OZNkTKaU4hYraCrxt/CQshNb0ej2PPPII999/P/v378fDw4P09HQmTJhwyscPGDCARYsWUVtbe8pRGHd3d0wmk6PDdhmyCkkI0Wa2Z6sbODZVwGsR7h1OuFc4ZsXM3oK9jg5NCIe44oorMBgMLFy4kLlz53LfffexaNEiDh06xLZt21iwYAGLFi0CYM6cOZSUlDBz5ky2bNnCgQMH+OSTT9i3bx8AcXFx7Ny5k3379pGXl0dt7Zm32khPTycxMZH09HRMJhOJiYkkJiZSVlbm0J+7LcgIjBCiTVTUVrCnYA/QdAFvQwmhCeQcyWF33u7TNr0Twpm5ubkxZ84cXnjhBVJTUwkLC2P+/PmkpKQQGBjIkCFDeOSRRwAICQlh1apV/Pvf/2bChAkYDAYGDRrE2LFjAZg9ezZ//vknw4YNo6ysjD/++IOJEyc2ef7HH3/cmiAB1nqb5jzX2ekUxcZF7nZQUlJCQEAAxcXF+Pv7t/XphRAa2HBsA7NXzCbKJ4oVl69o1nMW7ljIG4lvcH7X83l+/PMOjlA4g6qqKlJTU+natSuenp5ah9MhNfXfwJnev2UKSQjRJqz7H9kwkmKpg0nOT3ZITEII1yUJjBCiTVj3P2pGAa+FZSVSWkkaJTUlDolLCFc1b948fH19T3mZNm2a1uE5nNTACCEcrtZcy87cnYBtCUyQZxDRvtFklGWwJ38PI6NGOipEIVzO7bffzpVXXnnK+zrCkmxJYIQQDrevYB+VdZX4u/vTLbCbTc9NCEkgoyyDpPwkSWCEaCA4OLhDbycgU0hCCIez1r+ED0Gvs+1lx1IHsztvt93jEkK4LklghBAOZ93AMeLM/V9OZKmDkUJeIURDksAIIRxKURS256gN7Gypf7HoG9IXgIyyDAqqCuwamxDCdUkCI4RwqLSSNAqqCvAweFiTEVv4ufsR5x8HyCiMEOI4SWCEEA5lGX3pF9oPd4N7i45hqYORnamFEBaSwAghHGprdvM3cDwdSx3M7nwp5BVCqCSBEUI4lLX+pRV7GVkLefNkCkk4rxtvvBGdTodOp8NoNNK1a1ceeOABqqqq7Hb86dOnN/vxaWlp3HzzzXTt2hUvLy+6d+/OE088QU1NjV3i0Zr0gRFCOExuRS5HSo+g1+kZFDaoxceJD45Hr9OTU5lDTkUO4d7h9gtSCDs677zz+PDDD6mtrWXr1q3ccMMN6HQ6nn++7ffy2rt3L2azmYULF9KjRw92797N7NmzKS8v56WXXmrzeOxNRmCEEA5jWT7dK6gXvu6+LT6Ot9GbbgFqAzypgxHOzMPDg8jISGJjY5k+fTqTJ09m5cqVAJjNZubPn28dERk4cCDffPNNo+cnJSVx4YUX4u/vj5+fH+PGjePQoUM8+eSTLFq0iCVLllhHef78888mY7EkU1OmTKFbt25cfPHFzJ07l++++85RP36bsnkExmQy8eSTT/Lpp5+SlZVFp06duPHGG3nsscfQ6XSOiFEI4aJas3z6RP1C+3Gw6CBJ+UlM6jyp1ccTrkNRFCrrKjU5t5ebV4vf23bv3s26devo0qULAPPnz+fTTz/lnXfeoWfPnvz1119ce+21hIWFMWHCBDIyMhg/fjwTJ05k1apV+Pv7s3btWurq6pg7dy579uyhpKSEDz/8EKBFXXiLi4vbTfdemxOY559/nrfffptFixaRkJDAli1buOmmmwgICODuu+92RIxCCBdl6cDbkgZ2J0oISeCHgz9IIW8HVFlXycjPtdlGYuM1G/E2ejf78UuXLsXX15e6ujqqq6vR6/W88cYbVFdXM2/ePH777TdGjx4NQLdu3VizZg0LFy5kwoQJvPnmmwQEBLB48WKMRiMAvXr1sh7by8uL6upqIiMjW/SzHDx4kAULFrSL6SNoQQKzbt06LrnkEi644AIA4uLi+OKLL9i0aZPdgxNCuK6ymjL2Fe4D7DMC07CQV1EUGfEVTmnSpEm8/fbblJeX8+qrr+Lm5saMGTNISkqioqKCc889t9Hja2pqGDxYTfATExMZN26cNXmxp4yMDM477zyuuOIKZs+ebffja8HmBGbMmDG8++677N+/n169erFjxw7WrFnDK6+8ctrnVFdXU11dbf2+pKSkZdEKIVzGjtwdmBUzMb4xdim67R3cGze9G4XVhWSWZxLtG22HKIUr8HLzYuM1GzU7ty18fHzo0aMHAB988AEDBw7k/fffp1+/fgAsW7aM6OjGf7seHh7quRy0g3RmZiaTJk2yvn+3FzYnMA899BAlJSXEx8djMBgwmUw8++yzzJo167TPmT9/Pk899VSrAhVCuBZLAW9rlk835G5wp2dgT/YU7CEpL0kSmA5Ep9PZNI3jLPR6PY888gj3338/+/fvx8PDg/T0dCZMmHDKxw8YMIBFixZRW1t7ylEYd3d3TCaTTTFkZGQwadIkhg4dyocffohe337W7tj8k3z11Vd89tlnfP7552zbto1Fixbx0ksvsWjRotM+5+GHH6a4uNh6OXLkSKuCFkI4v4Y7UNtLv1D1U2xSvqxEEq7hiiuuwGAwsHDhQubOnct9993HokWLOHToENu2bWPBggXW9885c+ZQUlLCzJkz2bJlCwcOHOCTTz5h3z51KjYuLo6dO3eyb98+8vLyqK2tbfLcGRkZTJw4kc6dO/PSSy+Rm5tLVlYWWVlZDv+524LNIzD//ve/eeihh5g5cyYA/fv35/Dhw8yfP58bbrjhlM/x8PCwDpEJIdq/WlMtu/J2AfYp4LVICEnga76WpdTCZbi5uTFnzhxeeOEFUlNTCQsLY/78+aSkpBAYGMiQIUN45JFHAAgJCWHVqlX8+9//ZsKECRgMBgYNGsTYsWMBmD17Nn/++SfDhg2jrKyMP/74g4kTJ5723CtXruTgwYMcPHiQmJiYRvcpiuKwn7mt2JzAVFRUnDQEZTAYMJvNdgtKCOHakvKTqDZVE+QRRFf/rnY7rmVPpOT8ZMyKGb2u/QyHC9f30UcfnfL2hx56iIceegiAe+65h3vuuee0xxgwYADLly8/5X1hYWGsWLGi2fHceOON3Hjjjc1+vKuxOYG56KKLePbZZ+ncuTMJCQls376dV155hX/84x+OiE8I4YIs/V8Ghw+262qh7oHd8TB4UFpbSnpJOnEBcXY7thDCtdj88WXBggVcfvnl/POf/6RPnz7MnTuX2267jf/+97+OiE8I4YKs9S92KuC1MOqN9A7uDUgdjBDz5s3D19f3lJdp06ZpHZ7D2TwC4+fnx2uvvcZrr73mgHCEEK7OrJjZnmu/DrwnSghJYGfuTpLyk7ig2wV2P74QruL222/nyiuvPOV9jlqS7UxkM0chhF2lFqdSXF2Ml5sX8SHxdj++dSWSFPKKDi44OLjdbAvQElIBJ4Swq63ZWwEYEDoAo97+HUUtHXn3FOzBZLatJ4ZwHe1hlYyrcpXfvSQwQgi7shbw2nH5dENx/nF4u3lTWVdJanGqQ84htGNp4FZRUaFxJB2X5XfviC0N7EmmkIQQduWIBnYNGfQG+oT0YWv2Vnbn76ZHUA+HnEdow2AwEBgYSE5ODgDe3t6y71UbURSFiooKcnJyCAwMxGAwaB1SkySBEULYTVZ5FpnlmRh0BgaGDXTYeRJCEtiavZWkvCSm95jusPMIbVh2W7YkMaJtBQYGtnjH67YkCYwQwm4s3Xd7BfVy6N41sqVA+6bT6YiKiiI8PPyM7fKFfRmNRqcfebGQBEYIYTe7ctUEpn9of4eex1LIu69gH7WmWowG556rFy1jMBhc5s1UtD0p4hVC2I1lBMYyQuIosX6x+Ln7UWOu4WDRQYeeSwjhnCSBEULYhclssk7pOHoERqfTWUdhdufvdui5hBDOSRIYIYRdpBSnUFlXiY/Rh64B9tvA8XQsCYw0tBOiY5IERghhF5bpo4SQBAx6x9ctSCGvEB2bJDBCCLtoq/oXC8sIzMHCg1TVVbXJOYUQzkMSGCGEXezOU2tRHF3/YhHpE0mwZzB1Sh37C/e3yTmFEM5DEhghRKtV1lVyoPAA0HYJTMNC3p25O9vknEII5yEJjBCi1fbk78GkmAj3CifCJ6LNzjsyaiQAv6X/1mbnFEI4B0lghBCt1tb1LxZT46YC6v5LWeVZbXpuIYS2JIERQrSaJYHpH9Y200cWkT6RDAkfgoLCirQVbXpuIYS2JIERQrRaWxfwNnRe1/MA+DXt1zY/txBCO5LACCFaJb8yn4yyDHTo6BvSt83Pf26Xc9Hr9OzK28WR0iNtfn4hhDYkgRFCtIqlkVzXgK74ufu1+flDvUIZETkCgOVpy9v8/EIIbUgCI4RoFcsSZi2mjyymdZ0GwC+pv2gWgxCibUkCI4RoFS3rXyzO6XwObno39hfu51DRIc3iEEK0HUlghBAtpijK8SXUYW27hLqhAI8AxnYaC0gxrxAdhSQwQogWSy9Np6SmBHe9O70Ce2kai3U1UuqvKIqiaSxCCMeTBEYI0WKW0Zc+IX0wGoyaxjIpdhIeBg/SStLYW7BX01iEEI4nCYwQosWcof7Fwsfow/iY8QD8kibFvEK0d5LACCFaTKstBE7HshpJppGEaP8kgRFCtEitqZa9+epUzYDQARpHoxoXPQ5vN2+OlR9jR+4OrcMRQjiQJDBCiBbZX7ifGnMNAR4BxPjFaB0OAJ5unkzqPAmQ1UhCtHeSwAghWqTh9JFOp9M4muOmxanTSMvTlmMymzSORgjhKJLACCFaxLoDtRMU8DY0ptMY/Nz9yKvMY2v2Vq3DEUI4iCQwQogWcdYExmgwcm6XcwFZjSREeyYJjBDCZqU1paQWpwLOswKpofPi1KZ2Kw+vpNZcq3E0QghHkARGCGEzyw7U0b7RBHsGaxzNyYZHDifYM5ji6mI2ZG7QOhwhhANIAiOEsNmuXOecPrJw07sxpcsUQFYjCdFeSQIjhLCZs9a/NGRpavd7+u9Um6o1jka4ouTMEvZmlWgdhjgNSWCEEDZpuAN1/zDnTWAGhQ8iwjuC8tpy1hxdo3U4wsUUV9Ry+TvruGrhBqrrZDm+M5IERghhk+yKbPIq8zDoDMQHx2sdzmnpdXprMa+sRhK22piaT0WNieLKWrKKq7QOR5yCJDBCCJtYRl96BfXCy81L42iaZplGWn1kNRW1FRpHI1zJ+pR86/WMwkoNIxGnIwmMEMImzraBY1P6hvQl1i+WKlMVq4+u1joc4UI2pBRYrx8tkgTGGUkCI4Swye683YBzF/Ba6HS649NIqTKNJJqnqKKmUfGujMA4J0lghBDNZjKbSMpTe8C4wggMHJ9GWpOxhpIaWVEizmxDSgGKcvz7TBmBcUqSwAghmi2lOIWKugq83bzpFtBN63CapWdQT3oE9qDWXMuq9FVahyNcwIb6+pcgbyMAGZLAOCVJYIQQzWaZPkoITcCgN2gcTfNZppF+TZWmduLMLAnMJYOiAUlgnJUkMEKIZtuZtxNwnekji/O6qgnMhmMbKKgqOMOjRUdWUF7D3qxSAC4drCYwx4qqMJuVpp4mNCAJjBCi2SwjMANCB2gciW26+Hehb0hfTIqJ3w7/pnU4woltSlVHX3pF+NK3kz96HdSYzOSVSTdnZyMJjBCiWSrrKjlQeABwvREYgGlxajGvrEYSTVl/SE1gRncLwWjQE+nvCchSamckCYwQoln25O/BpJgI8wojwjtC63BsNjVuKgBbs7eSXZ6tcTTCWVn6v4zqFgJAp0C1WaOsRHI+ksAIIZqlYQM7nU6ncTS2i/KNYnD4YBQUVhxeoXU4wgnll1WzL1utfxlZn8BEB6kJjPSCcT6SwAghmsVa/xLmWvUvDclqJNGUjanq6Et8pB/BPu4ARNePwMhKJOcjCYwQollcaQuB05kSNwW9Ts/OvJ0cLT2qdTjCyViWT1umj0BGYJyZJDBCiDMqqCogoywDHToSQhK0DqfFQr1CGR45HIBf02QURjR2PIEJtt7WSUZgnJYkMEKIM7JMH3UN6Iqfu5/G0bSOZTWSTCOJhvLKqtmfXQbAyK7HR2BiJIFxWpLACCHOqD1MH1lM7jIZN50b+wr3kVqcqnU4wklsTDle/xJUX/8Cx0dgSqvqKKmq1SQ2cWqSwAjhIvIq83hx84ukl6S3+bl35aoJjCvsQH0mAR4BDI0cCsDGYxs1jkY4C8v00ejuIY1u9/FwI7B+TyRZSu1cJIERwkW8v+t9Pk7+mHv/vJdac9t9ElQUxToC0x4SGIBhEcMAtSeMEADrT1HAa2FdiSSFvE5FEhghXMSmrE0AHCg8wKKkRW123iOlRyipKcFd706voF5tdl5HGhqhjsBszd6KosgeNx1dbmk1B3PK0OlgZNfgk+6XpdTOSRIYIVxAQVUB+wv3W79/Z8c7bTaVZBl9iQ+Jx2gwtsk5HW1A2ACMeiO5lbkcKT2idThCYxvr9z/qE+lPoLf7SffLUmrnJAmMEC5gS9YWAHoE9mBU1CiqTdU8veHpNhk9aG/TRwAeBg/rz7Mle4vG0QitWfY/OtX0EcgIjLOSBEYIF2CZPhoROYLHRz2Oh8GDjcc28lPKTw4/d3tagdRQw2kk0bGdqv9LQ5LAOCdJYIRwAZuzNgNqAhPrH8sdA+8A4MXNL1JQVeCw89aaatmbvxeAAaGuu4XAqUghrwDIKa3iUG55ff3LaUZgZArJKbUogcnIyODaa68lJCQELy8v+vfvz5YtMgwrhCPkVeaRUpyCDh3DItU33esTrqdXUC+Kqot4afNLDjv3/sL91Jhr8Hf3J9Yv1mHn0cKg8EEYdAYyyjI4VnZM63CERiy7T/eN8ifA+9Q1XpZeMDml1VTXmdosNtE0mxOYwsJCxo4di9Fo5JdffiE5OZmXX36ZoKAgR8QnRIe36Zg6fRQfHE+ARwAARr2RJ0c/iQ4dP6X8xLqMdQ45d8P6F1fcgbop3kZv+ob0BaQOpiM71f5HJwrxccfTqL5dZhVXtUlc4sxsTmCef/55YmNj+fDDDxkxYgRdu3ZlypQpdO/e3RHxCdHhWepfLHv4WPQP6881fa4B4OkNT1NZZ//hbWsCE9Z+CngbkjoYsaG+gHd0EwmMTqc7vieSTCM5DZsTmB9//JFhw4ZxxRVXEB4ezuDBg3nvvfeafE51dTUlJSWNLkKI5mlY/3KiuwbfRYR3BBllGby94227n9uyB1J7WoHUkNTBdGzZJVWk5Kn1L8NP0f+lISnkdT42JzApKSm8/fbb9OzZk+XLl3PHHXdw9913s2jR6RtrzZ8/n4CAAOslNrZ9zaUL4ShZ5Vmkl6aj1+kZEjHkpPt9jD48NuoxAD5O+pi9BXvtdu7SmlLrXkGuvAN1UwaFD0KHjrSSNPIq87QOR7Qxy/RRQid/Arya7nEkCYzzsTmBMZvNDBkyhHnz5jF48GBuvfVWZs+ezTvvvHPa5zz88MMUFxdbL0eOSOMoIZrDMn3UN7jvaXeBnhg7kXO7nItJMfHkuicxme1TZJiUn4SCQrRvNCFepx9ed2UBHgHW7sIyCtPxWPc/amL6yEK2E3A+NicwUVFR9O3bt9Ftffr0IT399F1BPTw88Pf3b3QRQpyZpYB3RNTJ00cNPTziYfyMfiTlJ/HF3i/scu72Pn1kYVnZZWkWKDoOywqkpgp4LaxLqWUExmnYnMCMHTuWffv2Nbpt//79dOnSxW5BCSFUTdW/NBTmHca9Q+8F4PXtr9tlWfDO3J1A+2tgdyJrIW+OjMB0JFnFVaTmlaNvRv0LHF9KLTtSOw+bE5j77ruPDRs2MG/ePA4ePMjnn3/Ou+++y5133umI+ITosI6WHiWzPBM3nRuDwwef8fGX97qcweGDqayr5JmNz7R4m4Hy2nLeTnybdZnq0uz2PgIzJFytLTpQeIDi6mKNoxFtxTJ91C86AH/PM+/xFW1NYKowm2UDUGdgcwIzfPhwvv/+e7744gv69evHf//7X1577TVmzZrliPiE6LAsoy/9QvvhbfQ+4+P1Oj1PjH4CN70bfx39ixWHV9h0vhpTDZ8mf8q0b6fx1o63qDZVMypqFAPC2lcH3hOFeIXQLaAbANuyt2kcjWgrzen/0lBkgCd6HdSYzOSVVTsyNNFMbi150oUXXsiFF15o71iEEA1szNoInLn+paHugd2Z3X82b+94m/kb5zMqapS1+d3pmMwmlqYs5c3ENzlWrk49dfHvwl2D7+LcLuei17X/HUeGRgwlpTiFLdlbmNR5ktbhiDZwpv2PTmQ06Inw9+RYcRUZRZWE+3s6MjzRDO3/lUkIF6QoCpuPNa/+5US39L+FOP848qvyeW3ba02eY1X6Ki7/6XIeW/sYx8qPEe4VzhOjn+D7S75natzUDpG8gDS062iOFVeSll+h1r/ENS+BAVlK7Ww6xquTEC7mcMlhcipzMOqNDAwbaNNz3Q3uPDH6CQC+2f/NKVfXbMnawnW/XMc9f9zDwaKD+Lv7c//Q+1l22TIu73U5Rv2ZawLaE0sCs6dgD+W15RpHIxzNMvrSPzoAv2bUv1jIpo7ORRIYIZyQpf/LwLCBeLrZPlQ9LHIYM3rOAOCp9U9RY6oBYG/BXu747Q5uWn4TO3J34Gnw5Jb+t/DLjF+4qd9NLTpXexDpE0mMbwxmxcz2nO1ahyMcbMOh5i+fbkhGYJxLi2pghBCOZUlgbJ0+aui+offx55E/SStJ44XNL1BSU8Ivqb8A4KZzY0avGdw24DbCvMPsEbLLGxoxlKNlR9mavZWzos/SOhzhQOst9S/dbUtgZCm1c5ERGCFaQVEUu3W+bXhMa/8XGwp4TxTgEcBDIx8C4Mt9X1qTl2ldp7Fk+hIeG/WYJC8NSB1Mx5BRVEl6QQUGvY5hXYJseq5lCumoTCE5BRmBEaKFas21XLX0KvTo+fyCz3E3uNvluIeKDlFQVYCnwbPVPVimdpnKii4rWHl4JWdFn8Xdg++mT0gfu8TZ3lg68u7K20VlXSVebl4aRyQcYWOD/i+21L8AxMgUklORBEaIFjpYeJADhQcAWJ62nIu6X2SX41qmjwaFD2p1UqTT6Xhx/IvkVuYS6RNpj/DarRjfGMK9w8mpyGFX7q5WjX4J57X+UPP3PzqRZQqptKqOkqraZjXAE44jU0hCtFByfrL1+ifJn7S48+2Jmrt9QHMZ9AZJXppBp9PJNFIHsCHVtv4vDfl4uBHorSYtUgejPUlghGihhgnMnoI9bMtpfRdXs2Jmc3br619EywyLqN/YMVs2dmyPjhZWcKSgUq1/saH/S0OyK7XzkARGiBayJDAR3hEAfJr8aauPub9wP8XVxXi7edM3pO+ZnyDsypLA7MjdQa2pVuNohL1Zdp8eEBOAr0fLKihkJZLzkARGiBaoNdWyv3A/AI+OfBSAVUdWcbT0aKuOu+mYWv8yJGJIh2sm5wy6BnQlyCOIalM1SflJWocj7MzW/Y9OxTICc1QSGM1JAiNECxwsOkiNuQY/ox8TYycyOmo0ZsXMF3u/aNVx7V3/ImzTsA5GppHan9YU8FrESDdepyEJjBAtYJk+6hvSF51Ox7V9rwXguwPftbgVfZ25zvqmKQmMdizLqSWBaV+OFFSQUVSJm17HUBv7vzQk3XidhyQwQrRAwwQG4Kzos4jzj6OstowlB5e06Jh7C/ZSVluGn9GP+OB4u8UqbGMZgUnMSaTOXKdxNMJeLNNHA2IC8Glh/QtIDYwzkQRGiBY4MYHR6/TM6jMLgM/2fIZZMdt8TEv/l6GRQzHoDXaKVNiqZ2BP/Ix+lNeWs69wn9bhCDuxbB8w2sbtA05k6cabU1pNTZ3t/86F/UgCI4SNas3HC3gbrhS6uPvF+Ln7kV6azt9H/7b5uPbY/0i0nkFvYEjEEIBT7uQtXI+iKGxMadkGjicK8XHHw02PosCxYhmF0ZIkMELY6FDRIWsBb6xfrPV2b6M3l/e8HIBP9nxi0zFrzbVsy1b7yEgCoz1paNe+HC2sJKOoEqOhdfUvoBZ6Sx2Mc5AERggbJeWpy2stBbwNzYyfiV6nZ+OxjdZRmuYes7KukkCPQHoG9bRrvMJ2lgRmW862Fk0HCudiWX00MCYQb/fW76ATLSuRnIIkMELY6MT6l4Y6+XbinM7nAGotTHNZpo+GRw5Hr5N/llrrE9IHLzcviquLOVh0UOtwRCutt0P/l4ZkBMY5yCulEDZqKoEBuK7vdQAsPbSUgqqCZh2zYQIjtGfUGxkUNgiQaSRXtyQxgyWJGQCM7RFql2NGy0okpyAJjBA2OF0Bb0ODwgaREJJAjbmGb/Z/c8Zj1phqSMxJBKT+xZlIHYzr+2F7Bvd9mYhZgZnDY1u0geOpdJIRGKcgCYwQNjhdAW9DDRvbLd67+Ix76uzI3UG1qZoQzxC6BXSze8yiZawdebO22G2ncdF2vt9+lPu/UpOXq0fEMu/S/ifVrLWU1MA4B0lghLBBUwW8DU3tMpUwrzByK3NZfnh5k8dsuH2AvV5gRev1D+uPu96d/Kp8Dpcc1jocYYPvtx/lX1/tqE9eOvPs9P7o9fb7t3V8CqkKs1mSW61IAiOEDc5U/2JhNBiZGT8TUHepbuoTvLX+JUrqX5yJh8GD/mH9AZlGciXfbTvK/fXJyzUjO/Ps9H52TV4AIgM80eugxmQmr7zarscWzScJjBA2aG4CA3B5r8tx17uTlJ9EYm7iKR9TVVfFztydgNS/OCPZ2NG1fLv1KP/6egdKffLyzCX2T14AjAY9Ef6egEwjaUkSGCGaqTkFvA0FewZzYfcLAfgk+dSN7RJzE6k11xLuHU5nv872C1bYxbAIdWNHGYFxft9sPcrcb9TkZZYDkxcLWUqtPUlghGim5hTwnsiyP9Lv6b+TWZZ50v2bjh3fPkDqX5zPwLCBuOncOFZ+7JT//YRz+HrLEf5dn7xcO6oz/3Vw8gKyqaMzkASmA1qfuZ4n1z1JcXWx1qG4FMv0UZ+QPs1ONnoF9WJk1EjMipnFexefdL/sf+TcvI3e1tE2GYVxTl9tOcID3+5s0+QFZCWSM5AEpoNJKU7hnj/u4dsD3/LB7g+0DselWFYgJYQk2PS86/qoje2+OfANFbUV1tsraiusxxwRJQmMsxoaKXUwzuqrLUd4sD55uW5UF/57Sb82G8mUKSTtSQLTgVTWVfKvP/9FZZ36D+7rfV9TXluucVSuw5YC3obGxYyjs19nSmtK+fHQj9bbt+Vso06pI9o3mmjfaLvGKuxH6mCc01ebGycvT1+S0KbTsJYRmKMyAqMZSWA6kHkb53Gw6CChXqHE+MZQWlvK9we+d/h512SsYU/+Hoefx5FsLeBtSK/Tc02fawB1fyTL5oCW+hfZPsC5DQofhA4dh0sOk1uRq3U4gvrk5Ts1ebl+dNsnLyDbCTgDSWA6iCUHl/DDwR/Q6/S8MP4Fbup3EwCf7vmUOnOdw867JWsLd/x2B7N+nsXqI6sddh5Ha0kBb0PTe0zH1+hLWkkaazLWAFL/4ir83f2JD44HZBTGGXy5Od1a83LD6C48dXHbJy9wPIEpqaqjtKrpbtvCMSSB6QAOFh7kmQ3PAPDPgf9keORwLup+EUEeQWSUZfB7+u8OO/dbO94C1BGMe/+816HncqSWFPA25GP04bKelwFqY7vSmlL2FKijUpLAOD/pB+Mcft51jAe/3QXAjWPieFKj5AXAx8ONQG8jIHUwWpEEpp2rqK3gX6v/RZWpijGdxjB7wGwAvNy8uCr+KgAWJS1yyF4vm7M2szlrM0a9kQkxE6gz1zH3z7msSFth93M5WkvrXxq6Ov5q9Do964+t56t9X2FWzHTx70KET4S9whQOIhs7as9sVnhpxT5AXW30xEVNb+fRFjoFyDSSliSBaccUReGZDc+QUpxCuFc488fNR687/p98Zu+ZuOvd2ZW3i+052+1+7jcT3wRgRs8ZvDbpNc7vej51Sh0P/PUAv6T+YtfzOVpLVyA1FOMXw9mxZwPwRuIbgNS/uIohEUMAOFh0kMKqQo2j6ZjWHMwjJbccXw83HprWspFQe5Ol1NqSBKYd++7Ad/yU8hMGnYEXJrxAsGfjreRDvEK4qPtFgDoKY0+bsjaxNXsr7np3bul/C256N+adNY+Lu1+MSTHx0N8P8dOhn+x6TkdpTQHviSy7VFvqjmT6yDUEewbTPaA7oK4eE21v0bo0AC4fGoOvh5u2wdSz1MEclREYTUgC007tK9jH/E3zAbhr8F3WIfATXd/3egD+OPKH3XbcVRSFtxLV2pfLe11unSIx6A38d+x/mdFzBmbFzKNrHm2TVVCt1doC3oaGhA+hT3Af6/cyAuM6ZBpJO+n5FazalwOoq46cRcNdqUXbkwSmHSqvLWfu6rlUm6oZFz3OuuLoVLoFdmN8zHgUlNPu12OrDcc2sC1nG+56d27uf3Oj+/Q6PY+Pfpyrel+FgsLj6x7n6/1f2+W8jtLaAt6GdDod1/VVG9v1CupFqFdoq+MTbcNayJslhbxt7eP1aSgKTOgVRrcwX63DsTo+hVRxhkcKR3COcThhN4qi8NS6p0grSSPSJ5J5Z81rVPdyKjf0vYG/jv7FkoNLmDNoDoGega06v2X05YreVxDuHX7SY/Q6PY+OfBQ3vRuf7fmMp9c/TZ25jqvjr27xeR3JHgW8DV3Y7UIUFPoG2+d4om0Mi1Qb2u0r3EdJTQn+7v4aR9QxVNTU8dWWI4C68siZSDdebckITDvz9f6v+SXtF9x0brw4/sVmJSPDI4fTJ7gPVaYqvtz3ZavOvz5zPYm5iXgYPLi5382nfZxOp+PB4Q9yQ98bALXJ3qfJn7bq3I5iKeC1VwKj0+m4uPvF9AjqYZfjibYR7h1OnH8cZsUsozBt6PvtGZRU1REX4s2EXmFah9OIZQQmp7SamjqzxtF0PJLAtCN78vfw/KbnAbh36L0MCh/UrOfpdDpuSFATiS/2fkG1qbpF51cUhTd3qCuPruh1BWHeTb/Y6HQ6/jXsX9ZE5/nNz/PR7o9adG5HaVjA25oVSKJ9GBk1ElCnSYXjKYpiLd69bnRcm2zSaIsQH3c83PQoCmQVSx1MW5MEpp0orSnlX6v/RY25homxE63Fuc01JW4KEd4R5Ffl83PKzy2KYW3mWnbm7sTT4HlS7cvp6HQ67hlyD7cPvB2Al7e+zHs732vR+R3BngW8wvWNihoFwMZjGzWOpGNYn5LP/uwyvN0NXDEsRutwTqLT6RqsRJI6mLYmCUw7oCgKT6x7giOlR+jk04lnxj5jc7GpUW/k2j7qEt+WNLZrWPtyZe8rbSpO1el03DnoTu4cdCcAr29/nbd3vG3T+R3FngW8wvUNjxyODh0pxSlkl2drHU67Zxl9uWxINP6eRm2DOQ3pBaMdSWDagc/3fs7Kwytx07vx0oSXCPAIaNFxZvSagY/Rh0PFh6z79TTX3xl/sytvF54GzyZXPTXl9oG3c8+QewB4K/EtFmxf4JAOwbawdwGvcG0BHgHWvwXLXlbCMY4WVrAyWU0Sbxgdp20wTTjejbd1U0iHcsu4ZdEWdmcU2yOsDkESGBe3O283L215CYB/Df0X/cP6t/hYfu5+zOg5A4BFyc1vbNdw9GVm/MxWLQ2+pf8tzB02F4B3d77Lx8kft/hY9iAJjDiRZRpJ6mAc69MN6ZgVGNsjhJ4RflqHc1rWEZhWTiG9+Os+ftuTzYJVB+wRVocgCYwLK64uZu7qudSZ65jceTKz+sxq9TGv7XMtBp2Bjcc2srdgb7Oe89fRv0jKT8LLzYsbE25sdQw3JNzAvUPuBdTdss2KNtX9teZa9hWoe69IAiMsGhbyaj1C2F5V1ZpYvDkdcO7RF7DPUurc0mp+26OONm1MLcBslr+r5pAExoUt2L6AjLIMYnxjeGrsU3ap0YjyjWJKlykAfJx05tEPRVGsO07PjJ9JiFdIq2MAteW+t5s3WeVZ7MrbZZdj2koKeMWpDA4fjLvenZyKHFJLUrUOp136MTGToopaYoK8OKePc292ahmBac0U0nfbjlJXn7QUVdSyN6vULrG1d5LAuKijpUf5dv+3ADw99mm7NtWyLKn+JfUXssqzmnzsn0f+JDk/GS83L25KaFnty6l4GDyYGDsRgOVpy+12XFs0LOA9UzNA0XF4unkyOHwwABsyZRrJ3hRF4SPL0ulRXTA42dLpEzUcgWnJyImiKHy5WW3U5+Gmvs6sT8m3X4DtmLwqu6i3d7xNnVLH6KjRdt9PJyE0gWERw6hT6vh87+enfZyiKNbVQtfEX0OQZ5Bd45gaNxWAlYdXajKNJPUv4nRGdZLl1I6y5XAhycdK8DTquWq48498RgZ4otdBTZ2ZvHLbe2htTiskJa8cH3cDt43vBsD6Q5LANIckMC4opSiFpSlLAbh7yN0OOYdlFOabfd9QXlt+ysesOrKKPQV78Hbztkvty4nGRo/Fx+ij2TSSJDDidCyFvJuzNlt3Fhf2YRl9mT4omkBvd22DaQajQU+EvyfQsqXUllqfiwZ2sk6XbUzNxyR1MGckCYwLeiPxDcyKmbNjz6ZfaD+HnGN8zHji/OMorS095Y7RZsXM24nq6MusPrNatX/S6Wg5jSQFvKIpfYL74OfuR2ltKXvy92gdTrtxrLiSX3er09Y3ONm+R03p1MJdqYsra/l51zEArhoeS0Inf/w83CitqiM5s8TucbY3ksC4mOT8ZFYeXokOHXMGz3HYefQ6vXXX5E+SPznpU+aq9FXsK9yHj9HHOlrjCJaC4raeRpICXtEUg97AiMgRgCyntqfPNqRjMiuM6BpMnyjX2SzzeB2MbUupf9yRSVWtmd4RfgyKDcTNoGd412AA1qfk2T3O9kYSGBezYPsCAM7vdj49g3o69FwXd7+YII8gMssz+S39N+vtZsVsXXk0q8+sFjfOa46G00g7c3c67DwnkgJecSaW5dRSB2MfVbUmvtikTqc4267TZ9LSbrxf1k8fXTU81rqKdHQ3dSWn1MGcmbwyu5Bt2dtYk7EGN50b/xz4T4efz9PNk5nxMwF1SbWl58Vvh3/jQOEBfI2+Nu+5ZKuG00grDq9w6LkakvoXcSaWOpjtOdupqpON/Fpr2c5j5JfXEBXgyZS+zr10+kSdrCMwzf872J1RzO6MEtwNei4dHG29fXR3NYHZnFZInUl2uG6KJDAuQlEU/m/b/wEwved0Ovt3bpPzXtX7Ktz17uzK28X2nO1q7Uv9yqNr+17r0NEXC8s00oq0FW02jSQJjDiTOP84wr3DqTHXsD1nu9bhuDRFUVi0Pg2Aa0d1wc3gWm9NMS1oZmdZOj21XyRBPseLlftE+ePv6UZZdR27pQ6mSa71V9KBrctcx7acbbjr3bltwG1tdt4QrxAu6n4RAB8lfcSKwys4WHQQP6OftUbG0SzTSNkV2W0yjSQFvKI5dDqdbCtgJ9uPFLHzaDHubnpmusDS6RMdn0JqXg1MZY2JHxIzAE76eQ16HSNlGqlZJIFxAYqi8Pr21wG4Kv4qIn0i2/T81yeo00R/HvmTV7a8AsB1fa+za/O8prT1aiRLAa+v0VcKeEWTLAmM1MG0jmXX6YsGdCLE10PbYFrAMoVUUlVHaVXtGR//y+5jlFbVERvsZa15achaByMN7ZokCYwL+D39d5Lzk/F28+aW/re0+fm7BXRjQswEFBSOlR/Dz92Pa/te26YxTO3Sdk3tGk4fSQGvaIqlkDc5P5niatlFuCVySqusS4ldrXjXwtfDjQAvI9C8pdSL66ePrhoWi/4UnYYtdTBb0gqolTqY05JXZydnMpt4Y/sbgFpzEuwZrEkcDZdKX9/3evzc23Z32DHRY9psGknqX0RzhXuH0y2gGwoKm7M2ax2OS/p8Yzq1JoUhnQPpH+P4mjpHae5S6pTcMjalFqDXweVDTz3C2zvCjyBvIxU1JnYeLbJ3qO2GJDBO7ufUnzlUfAh/d3+H9ls5k2ERw5jSZQoJIQl22fXaVh4GDybFTgIcP40kCYywhdTBtFxNnZnPNtbvOu2ioy8WzV1K/eUWdfRlUu9wIgM8T/kYvV7HKKmDOSNJYJxYramWtxLVfis39bupzWpOTkWn0/HyxJdZfOHiNh99sbCuRjrsuNVIUsArbCX9YFrul93HyC2tJszPg2n9orQOp1Wim7GUutZk5tutRwHOuM/TKKmDOSNJYJzY9we/52jZUUI8Q7gm/hqtw9HcmOgx+Bp9yanIcdg0UkpRihTwCpsMjxyOXqcnrSTtjLu3i8YsxbvXjuyCu5trvx1FN2Mp9e97csgrqyHMz4NJ8eFNHu94HUwh1XUm+wXajrT6L+a5555Dp9Nx77332iEcYVFVV8XCHQsBmD1gNt5Gb40j0l5brEZKyk8CpAOvaD4/dz/6hah7ksk0UvPtOlrMtvQijAYdV490/Q8LzVlKbem8e/nQGIxn6HXTM9yXUF93quvM7DgiBeKn0qpX6M2bN7Nw4UIGDBhgr3hEvS/3fUlOZQ5RPlFc0esKrcNxGlPj1NVIjppGstS/JIQk2P3Yov2yTCNJAtN8ll2nL+gfRbjfqWtBXEn0GTZ0zCyqZPX+XACuHHbmhE2nk34wZ9LiBKasrIxZs2bx3nvvERQUZM+YOryymjL+t+t/ANwx8A7cDc6/pXxbGdPp+DTSjtwddj++FPCKlmjYD8ay5YY4vfyyan7amQm4fvGuhaUXTHZpFTV1J3+4+mbrUcwKjOoWTNdQn2Yd83g/GNnY8VRanMDceeedXHDBBUyePPmMj62urqakpKTRxVZZ5Vnc/+f9/H3075aE61I+2fMJRdVFxPnHWbvgCpW7wd26GmlFmn33RpICXtFSA8MH4mnwJK8yj0NFh7QOx+n9sjuLmjozA2ICGNy5fXwADvV1x8NNj6JAVnHjURizWbFuHTBzePO3gbHUwWxLL6KqVupgTtSiBGbx4sVs27aN+fPnN+vx8+fPJyAgwHqJjbVtvlNRFP6z9j+sPLySh9c8TFFVUQuidg1FVUV8nPQxAHcOuhM3vZvGETmfKXGO2RtJCnhFS3kYPBgcPhiAjVmyGulMLL1NJvQK0zYQO9LpdNZppKMn9IJZczCPjKJK/D3dOK9f8zupdwv1IdzPg5o6M9vSC+0ab3tgcwJz5MgR7rnnHj777DM8PZs3b/nwww9TXFxsvRw5csSmcy45tMQ6t1xcXcwbiW/YGrbL+CDpA8pqy+gd1Nv6Ri0as04jVdp3GskyfSQFvKIlRnWq7weTKXUwZ7LzqFqU2j/adRvXnUqn09TBWEZfLh0cjafR0Ozj6XQ66yjMBqmDOYnNr9Jbt24lJyeHIUOG4ObmhpubG6tXr+b111/Hzc0Nk+nkYS4PDw/8/f0bXZorrzKPFze/CBzvA/LVvq+sbzbtSW5FLl/s+QKAuwbfJW+ip9FwGsmeq5EsK5D6Bsv0kbCdpZB3c/Zm6sx1GkfjvCprTBzIKQNgQEygtsHYmXUpdYNmdvll1axIVpfXX2XD9JGF7It0eja/Q55zzjns2rWLxMRE62XYsGHMmjWLxMREDIbmZ5fNMX/jfEpqSugT3Ifnxz/PtK7TUFCYt3Gew/fEaWvv7nyXKlMVA8MGMj5mvNbhODXLaqSVafbbG8m6AilUViAJ28UHxRPgEUB5bTm783ZrHY7TSj5WjMmsEO7ncdpOtK7KupS6wRTS99szqDUpDIgJoG8n25uRWhraJR4porJG6mAasjmB8fPzo1+/fo0uPj4+hISE0K9fP7sGtyp9FSsOr8CgM/D02Kdx07vxr6H/wsvNix25O1iastSu59NSRlkG3xz4BoC7B9+NTnfyBl/iuNGdRlunkRJzElt9PCngFa1l0BsYETkCkK68TbFMHw1w4X2PTufEKSRFUY5v3HiGzrun0yXEm6gAT2pNClsOF9gn0HbCaecoSmtKeXbDswDcmHAj8cHxAET4RHD7wNsBeGXLK5TVlGkWoz29nfg2deY6RkWNYkTUCK3DcXqNViMdbv1qJCngFfYg+yKd2S5r/UugtoE4wIndeLelF3Iwpwwvo4GLB3Zq0TF1Op11GmmDTCM1YpcE5s8//+S1116zx6GsXtn6CjmVOXTx72JNWCyu63Mdcf5x5Ffl8/aOt+16Xi3sL9zPTyk/Aeroi2gee04jSQGvsAdLHcyO3B1U1Da9K3FHtaN+BVJ7HIGJCTqewJjNCos3qaMvFwyIws/T2OLjjuouDe1OxSlfqTdnbeab/ep0yhOjn8DTrfE8qdFg5KERDwHw2Z7POFh4sM1jtJdacy2PrXkMs2JmcufJ9A/rr3VILsOe00hSwCvsobNfZ6J8oqg117I9Z7vW4Tid0qpaUvLKAejfDhOYyABPdDp1l+20/HKW7jwGwMwWTh9ZWEZgdh4tprxaCsQtnC6Bqaqr4sl1TwJwea/LGR45/JSPGxs9lrNjz8akmHhu03Mu2/3yf7v+x56CPfi7+/PIyEe0DseluBvcObvz2UDrViOll6Tz55E/ASngFa2j0+lkd+omJGWWoCjqVEuor4fW4did0aAnon5bhIWrU6isNdE9zIehXVrXrC822JuYIC/qzAqb06QOxsLpEpi3d7xNemk64V7h3D/0/iYf++/h/8bD4MHGrI12qYNoa3vy9/DujncBeGTkI4R5t5+mTm3FsrR+5eGWTSNtOraJa36+huyKbCJ9IhnTaYy9QxQdjNTBnJ6lgV176//SkGUl0jfbjgJq5117LMqQ5dQnc6oEJjk/mUVJiwB4dNSj+Ln7Nfn4GL8Ybu53MwAvbn7Rpeaca0w1PLr2UeqUOiZ3nsz5Xc/XOiSXNLrTaPyMfuRW5to8ZP/1/q+5beVtFFcX0z+0P5+f/zkBHu33hVW0DcsIzN6CvRRWSffUhqwN7Nrh9JGFpZDXZFYwGnRcOiTaLseVhnYnc5oEps5cx5PrnsSkmJjSZYp1auBMbup3E9G+0WRXZFs3QHQF7+x4hwOFBwjyCOKxUY/JsukWcje4M6mzbXsj1ZnreG7Tczy9/mnqlDqmdZ3GB1M/kBEwYRehXqH0COyBgsKmrE1ah+NUdmWoCczAdtbAriHLUmqAc/tG2G2qzNIPZldGMSVVtXY5pqtzmgRmUdIiay3IwyMfbvbzPN08+ffwfwPwUdJHHC457KgQ7WZ33m4+2P0BAP8Z/R9CvEI0jsi1WVcjNWMaqaSmhDm/z+GzPZ8Basfj58c9f1KhuBCt0XB3aqEqrqjlcL46St4RppCgZZ13T6dToBddQrwxK7A5VepgwEkSmMMlh63Lof89/N+EeoXa9PyzY89mbKex1JpreX7T844I0W6qTdU8uuZRTIqJaXHTOLfLuVqH5PJGRzVvGim9JJ1rf76WtZlr8XLz4pWJr3DrgFtl9EvYndTBnGxnRhGgNmYL8G75kmJn1z3UB1Cnks7qYdt72ZlIP5jGNE9gzIqZJ9c9SbWpmtFRo7mk+yU2H0On0/HgiAdx07vxd8bfrD6y2gGR2scb298gpTiFUK9QWXVkJ0aD8YzTSJuObeLqZVeTWpxKuHc4H533kSSPwmGGRgzFoDNwpPQIGWUZWofjFI534A3UNhAHG909hGcv7cf/bhiGQW/fD0eWOhgp5FVpnsB8d+A7tmRvwcvNi8dHP97iT8NdA7pyfd/rAXhu03NUm6rtGaZdJOYkWouUnxj9BIGegdoG1I40NY301b6vuG3lbZTUlNA/tD+LL1gs2wUIh/J196V/qNrTSaaRVJYOvAPa8fQRqB+oZ43sQp8o2/c9OhPLCExSZgnFFVIHo2kCk1uRyytbXgFgzqA5xPjFtOp4tw24jXCvcI6WHeWj3R/ZIUL7qayr5LG1j6GgcHH3i5kYO1HrkNqVU00j1ZnrmL9xPv/d8F8p1hVtzrIaSaaRVNYl1O14BZKjhft70i3MB0WBjakyCqNpAvPi5hcprS2lf2h/ZvWZ1erjeRu9mTt8LqA2iMssy2z1Me3l/7b9H4dLDhPuHc6DIx7UOpx2p+E00vK05ZTUlHDn73fy+d7PASnWFW2vYSGvqzbatJfc0moyi6vQ6aBfOx+BcTTpB3OcpgnMXxl/4aZz48kxT2LQG+xyzPPizmNYxDCqTFW8tOUluxyztTZnbbauenlqzFP4u9t/aFEcn0ZanracWctmsS5znRTrCs0MDBuIl5sXBVUFHCg6oHU4mtpdv3y6e5gvvh5uGkfj2kbLvkhWmtfA/KP/P+gV1Mtux9PpdDw04iEMOgMrD69kXeY6ux27JSpqK/jP2v8AMKPnDM6KPkvTeNqz0VGj8XP3o6CqgLSSNCnWFZoyGowMiRgCwIbMjj2NtLOD1L+0BUs/mL1ZpRSU12gcjbY0TWC6+HfhtgG32f24vYN7MzN+JqAW9NaatCt2ennLy2SUZdDJp5O1X41wDKPBaN1aQIp1hTMYFVk/jZTVsQt5pf7FfkJ9PegV4QvAxg4+jaRpAvPIyEdwN7g75Nj/HPRPgj2DSS1OtU7ftLV1mev4av9XADw99ml8jD6axNGRzB02l/+b9H98eN6HUqwrTm/dAvh0BlQ4tiHYqE5qArMlawu15o65akRRFHZmWJZQSwJjD6OkDgbQOIEZGDbQYcf2d/fn3iH3AuoGkW3dobe0ppQn1j0BwMzeM60rEoRj+br7cnbns/EwtL+dboWdFGfAb0/Cwd9gw1sOPVWvoF4EeQRRUVfB7rzdDj2Xs8ouqSa3tBqDXkffKElg7EEa2qk0r4FxpEt6XMKA0AFU1FVw6ZJLeWXLK5TUlLTJuV/c/CJZ5VnE+MZw39D72uScQohm2Pg2mOvqr78LVY57TdDr9IyIGgF03DoYy/RRz3BfvNzts1ijoxtZn8Dszy4jr8z5ep61lXadwOh1el6Y8AIjI0dSa67lw6QPueC7C/hsz2cOHc796+hffH/we3ToeOasZ/A2ejvsXEIIG1QVw5aP1Ose/lBdDFved+gpLaOvHXVjx+MdeGX0xV6CfdyJj/QDOvYoTLtOYACifaN5b8p7vHnOm3QL6EZRdRHPbXqOS5dcyu/pv9u9P0NxdTFPrnsSgGv7XsvQiKF2Pb4QohW2fAg1pRDWB6bV75u2/k2orXTYKS0deQ8WHXTYOZzZ8fqXQG0DaWdkOXUHSGBAXVo9PmY83178Lf8Z9R+CPYM5XHKYe/+4l5uW30RSXlKrz1FrrmVr9lYe/vthcitzifOP4+7Bd9sheiGEXdTVwMZ31Otj7oL+V0BAZyjPhe2fOuy0Xfy7AFBUXURhVaHDzuOMFEVhV/0UkozA2Jc0tOsgCYyFm96NK3tfybJLlzG7/2w8DB5szd7KzGUzeejvh2zq3KsoCinFKXy25zPu+v0uzvriLG789Ub+zvgbvU7PM2c9I11fhXAmu76G0mPgF6UmLwYjjK3/kLH2/8BB7Ra83LyI8okCIK0kzSHncFZHCysprKjFaNDRu37KQ9jHyK4h6HSQkltOdkmV1uFookMlMBa+7r7cPeRull66lIu6XQTAspRlXPT9Rby29TVKa0pP+byCqgJ+Sf2Fx9c+zpRvp3DJD5fw3Kbn+PPon1TUVRDkEcS0uGm8M/kdh66wEkLYSFHUpdMAI28Ht/r2DYOvBZ9wKD6iJjgOEucfB0BacZrDzuGMLPUv8ZH+eLhJAa89BXgbSeikdnXvqHUwHbqnc6RPJPPGzePavtfy0paX2Jy1mfd3v893B77jn4P+ycXdL2Zn3k7WZ65nfeZ69hTsafR8d707gyMGMzpqNKM7jSY+OB69rkPmhEI4twMrIXcPuPvBsJuO3270gtF3wm9PwJpXYcBM0Nv/33BcQBzrj60ntTjV7sd2ZjszigCZPnKU0d1C2J1RwvpD+VwyKFrrcNpch05gLPqG9OX9Ke+z+uhqXt7yMmklaTy78VnmbZyHQuMi315BvawJy5CIIXi5eWkUtRCi2da9rn4degN4nvBmOuwfsOYVyNsPe5dC34vtfvquAV0BSC3pWAnMLlmB5FCjuoXw3t+pMgLT0el0OibGTmRs9Fi+2/8db+14i4KqAsK8whjdaTSjokYxutNoQr1CtQ5VCGGLjK2Q9jfo3WDUHSff7+kPI26Fv16Ev1+GPheBnTf+7IhTSGazYk1g+kcHahtMOzW8azB6HaTlV3CsuJKogI71gVoSmBMY9Uauir+Ki3tcTEFVAZ18OskuxkI0V/4h2P0dhPaEhOlaR6NaWz/60v8KCIg59WNG3qEupz6WCIdWQY9z7BqCZQTmaOlRas21GPVGux7fGaXll1NaXYeHm56e9Xv3CPvy9zTSPyaQHUeKWJKYye0TumsdUpuSgo3T8HLzIto3WpIXIc6kugy2fwYfTIMFQ+CPZ+DrG+DHu6FW49URBamw50f1+pi7Tv84nxAYeqN6/e9X7B5GuHc4Xm5e1Cl1HC09avfjO6Nd9f1fEjr5YzTIW42jXDuyMwBvrjrY4bryyl+VEMJ2igKH18MPd8JLvWDJPyF9HaCD2JHq122L4IOpUNi2+5A1sv5NUMzQYzJEJDT92NFzQG+Ew2sg3b5t//U6fYebRjregTdQ20DauRlDYugfHUBpdR0vr9ivdThtShIYIUTzlWSqdSILhsKH50Hip1BbDsHd4Oz/wH1JcPMKuPZb8ApWp2QWjldXAbW18vzjDerGNKOpZEA0DLpave6AURhLAtNRCnkteyD1j5YCXkfS63U8flFfAL7cnE5yZtvs9+cMJIERQjStrhqSvodPZ8CrCfD701BwCIw+MOhauOlXuGsbjJ+rJgGg1pDc9hd0GgJVRfDZFfDHfDCb2i7uzf+DukqIGghdxzfvOWPvBZ0eDiyHrF12DcdSB9MRRmBMZoXdGeob6cBYSWAcbXhcMBcMiMKswH+XJtt9ixxnJQmMEOLUcvfBzw/Ay73h6xvh4G/qdEznMXDJWzB3P0x/E7qMPvWqncBY+MevMOxmQIHVz6mJTHkbLPmsrYRNC9XrY+5u/qqikO6QcKl6fc2rdg0pLiAO6BjdeA/lllFZa8LH3UDXUCngbQsPnRePu5ue9Sn5rEjO1jqcNiEJjBCiscoi+OVBeGu0mgRUFoJfJxj3L3Wk5R+/wOBZ4NGMNyY3D7jwFbh0Ibh5waHf4d0J6tJmR0r8DCryIbAz9J1u23PPul/9mvS9uqrKTqxTSLY0s6sqUeuNXMyOI0UAJEQHYNDLQoi2EBvsza3jugEw7+c9VNe14WinRiSBEUKozGZI/BzeGKZueqiYoPf5aj3LfbvhnMfVEYqWGDgTZv+u1soUH4EPzoMtHzjmzdlsgnVvqNdH3QkGG7tFRPaDnlPV0aa1r9ktrIabOhZVFZ35CYmfw3Ox8N4k2LtM/e/jIiwrkAZI/UubumNid8L9PDicX8FHa9O0DsfhJIERQsCxHWpR7g93qLszh/SE676Hq79QV/Do7bCPTUQC3PonxF8IphpYep96vpqK1h+7ob1LoTAVvIJgyHUtO8a4f6lfE7+A4gy7hOVt9CbSJxJoxjRSTQWsfEK9nrkdFl8DC8epPXbaso6ohawrkGIDtQ2kg/HxcOOB8+IBWLDqILml7XtZtSQwQnRklYWw7F/w7kQ4slEtzD33abhjHXQ/2/7n8wyAqz5Vz6HTw44v4P1z7TdVoyjHG9cNvwXcfVp2nM4joctZYK6F9W/YJzZsmEba/B6U50BgF3VKy90PsnfDNzfBmyPVxMpUZ7e47KnWZCb5mFrAKyMwbe+ywdEMiAmgrLqOV1bu0zoch5IERoiOyGyGbR+ry6E3/0+dLuk3A+7aAmPvOb5bsyPodOo5rv9R3Qk6e7eaQO1Z2vpjp6+HjC1g8FC3B2iNcfW1MFs/gvK8VocGzdwTqarkeAHxxIdh8hNw3y6Y+Ah4BkL+AfjhdrVp4NaP1FViTmRfVik1dWb8PN3oEuKtdTgdjl6v4/EL1WXVizcfISmzWOOIHEcSGCE6moxt8P5k+PEutdA1LB5u+Aku/wD8O7VdHF3HqUutY0dBdQl8OQuW3g8VBS0/pmX0ZdDV4Bveuvi6nw1Rg6C2Qq0JsoNmNbPb8LY6MhbaCwZcqd7mFQQTH4R7d8HkJ8E7FIoOw0/3wOuDYeNCdeWVE7DWv8QESCdzjQyLC+bCAVEo7XxZtSQwQnQUFQXw073w3tnqKiB3P5jyLNy+pvl9UuzNPwpuXKoW2wJseV8dFdr6ke21Hrn7YP8vgA5GN7FtQHPpdMdrYTa+q46MtJJlKfVpp5AqCo5PWU18+OTaI09/OOs+NZE57znwi4KSDPjlAXhtAKz9P3VrBw1JB17n8NC0eDzc9GxIKWB5UvtcVi0JjBDtndmkrvhZMAS2fggoMOAqdbpozBwwaLyxoMEI582DG5ZCWB+oLFBHFt47G45sbv5x1tWPvsRfAKE97BNb/IXqSEh1sfo7bKVuAeoyV8umjidZ97o6GhXRv+nl3+7e6s7a9+yAC16BgM5qzczKx+G1furO2qZTHL8N7MooAqT+RWsxQd7cOr59L6uWBEaI9qrkmPpG9vogdcVPZSGEJ8BNv8Bl74JfpNYRNtZ1HNz+tzqy4OGvbkPw/mR1v6WynKafW5oFO79Srzdn24Dm0uuP94VZ/2arp2kabuqYUXrC6qayHHUqCODsR9Vzn4mbBwy/Ge7epjYXDO6u/nde9Yw6KtPGqmpN7D1WCkD/GElgtHb7BHVZdXpBBR+2w2XVksAI0Z6YTbB/OXxxjdr2f9UzUJSuFn+e97xac9JljNZRnp7BqI4s3LVV3aYA1P2WFgxVa0NOt/Jm4zvq0uzYkeoKInvqf/nxEQ7L3kotpNfprf1gTppGWvOqWm8TPRR6nWfbgQ1GtbngnM1w0euATh0x2vJhq+K11d6sUurMCiE+7kQHerXpucXJfDzceLB+WfUb7XBZtSQwQrQHRUfUvYZeGwCfXwn7lqmN6DqPUbvg/msvjLrd9qZuWvENV7cpuPk3tZC2ugR+fUjthZL6d+PHVpfC5vrpHXuOvlgYjDC2/rhrX2/11ExX//o9kRr2ginOgM3vq9fPfqz5Wx+cSG+AoTeoxwD4+d9231m7KbssGzhKAa/TuHRwNAPrl1W/vKJ9LauWBEYIV2WqVZcef3YFvNZf3Wuo5Ki6C/ToOXDnJrXt/8CZYHTRT8Oxw2H2KrjwNfXnykmGRRfC1zcdbzC37WO1RiWkh9o52BEGXws+YVCcDru+adWhTrkn0l8vgqla7T3TbVKrjg+oxcd9p6t9bL68zm7N+M5kx1HpwOtsGu1WvaV9LauWBEYIV1OYpu4I/Wo/denxgRWAAnHjYMb7cP8emPoshPXWOlL70Btg2E3qtNLwW9QGeEnfqVse/PUSrH9LfdyYu5pXN9ISRi8YXb9S6u+XoKa8xYc6qZldQSps/0S9fvajLR99aUing+lvQUQ/derry1ltssx6V30C019WIDmVoV2CuWhgJxQFnv6p/SyrlgRGCFeRdxA+uRT+byD8/TKUZan9QMbeo26yeONStV7D6Kl1pI7hHQwXvAy3rlZ7x9RWwKr/qqNOPuEwYKZjzz/sZvX3nX9Q3Z27hZ1wrSMwll4wq18Acx10P8e+9UnuPjDzM3XkKnO7urLLgW9cFTV1HMhRC3gHSAGv07Esq96YWsDypCytw7ELSWCEaKnKIvjoQlh0kboKxpGydsMHU+HQKvX7bpPgikXqaMu5T7d8k0VXFDUA/vErXPou+Eaot42Z4/jEzdMfZn4Obp7qqNfSliUElhGYwupCijK2ws7F6h1nP2rHYOsFxcGVi0BngJ1fqiupHCQ5swSzAhH+HkT4t9Mk2oVFB3pxW/2y6mfbybJqSWCEaAlTLXx1PaT9Dal/2Xc/nxMd3QofXQAVeRA5AO7eDtf/AAnTHdvy35npdDDwKnVa6R8rHFO8eyqdR6odi3V6dUXSn/NtPoS30ZsIbzXxSvt7vrqNQ/yF6uojR+g6HqbOU6+v/M/xJNjOLPUv/aMDHXJ80Xq3T+xOhL8HRwoq+WBNmtbhtFr7T2Bqq9Q3lnYy5yecgKLAsvshdbW6+WFgF3Wp8vtT1Db99pS2Fj6+GKqK1CXCN/wEwd3sew5X5uGnJhVtueIl/gJ1Kgtg9fMtWqps7ch7dB2gg0mP2C++Uxl5GwyapSZLX98EBSl2P4VlBdJAmT5yWt7ux5dVv/nHQXJKqzSOqHXaZwJTmqWuTFg8C17opnYg/eUBSWKEfaz9P/XvS6dXP43f8htEDVRHSD66EA7+bp/zHPwNPp0BNWXqp+hrvwOvQPscW7TOsH/A+PpGccvuh70/2/R061Jqoxv0uwwiEuwdYWM6ndqxN3qomgwvnmX3LQd2ZlgKeCWBcWbTB0UzMDZQXVa9fL/W4bRK+0hgFAUyE+HP5+HdSfByb3Wjur1LobZ+tcCmd9WeCJLEiNZIXgK/PaFenzofep+n9iy5cRl0m6j+vX1+5fGusC21Zyl8cTXUVULPqXDNV+Dh2+rwhR1NekRdXq2Y4Zt/wJFNzX5qnKLucZTq7q7uMt0WjJ5w1Wdq3VBOsrqjtdlsl0OXVtWSkqu+1vaXJdROreFu1V9tPcL+7FKNI2o5101gaipg3y9qZf0rfeDdCfDnPMisH8KPHgqTHlU7j178BqCDze/Bz3MliREtc3QrfHeren3ErWpjOAsPP7jma+g3Q11R8t1sWPdGy86z82u1vsZUo/byuOpT1+3j0p7pdGp/mp5T1ETz86sg70Czntp1v1qHkuYbbL99m5rDP0r9ezK4w56f1CXhdmDZgTo60IsQXw+7HFM4ztAuQUzrF4miwOu/N+9v1hm5SFvOesUZsP9XtVV66mqoazB/Z/SB7pPUFtw9p4BfxPH7ogaqLzZL5sDm/6m3nf9S286bC9dWlA5fzFT/5npOUUdfTuTmDpf9T13Su/FtWPEolGXD5Kea359k6yI1KUeBgdfAxQtcp3tuR2QwwhUfqVOHmdvg08vg5pVN7zOVtoau6VugczRHlFrqzHW46dvwv3HsCLWG58e74I9n1V4x8a1rAGjp/zIwVkZfXMU9k3vyy+4slu06xt3ZpfSK8NM6JJu5xgiMoqjL/17rr843H1iuvpEEdFY/CV/7LTyQovY8GHJd4+TFYvC1cIllJOZ/sOxfMhIjmqeqGD67Um0IFtFfrXs5XVKh18N582Hyk+r3616HH+5oXvv59W/BT3cDitpz5JI3JXlxBe4+6hRfcDc10f3scqgqOfVjFQVWPUuEyYQnenVTx7K26ZLbyJDrYfhs9fp3t0Ju61rMW+tfZAWSy4iP9Hf5URjnT2DMJvjlQVj+iLq3S8xwOOcJuGM93LsTzn8RekxuXg+IwdeqbwroYMv7ahJjpzlg0U6Z6tSmZbl7wDcSrvlSnS5qik4HZ90H09+u77+xWB29aapo8q8XYfnD6vUxd6ufkB3VVVbYn2+Y+kHKJwyydsFX10FdzcmPO/Q7pK9D7+ZJF8tKpBM3dWwr581Xty6oKVXrrSqLWnyonfUrkKSBnWu5+5yeACzbdYwDLlgL49yvkDUV6j4em+q3mJ/yjDo8O+5+iOjbsimgwbPUFtuWJOZnSWLEaSgK/PJvtW+G0RuuWQwB0c1//qBr4OovwM1LXVH08cVQnn/yOX57Ut01GtSCznOflulNVxTcTR2JMfpAyp+w5M7Gry2Kcvy/8/Bb6BrUC2jQkbetGYxqk7uAWCg4BN/erH5gtFFheQ1HCtRtCvpJAa9L6RPlz3kJ9aMwqw5qHY7NnDeBKctVN23btwwMHuo885i77PPCPuiaBknMB5LEiFNb/6b694EOZvwPOg22/Ri9pqq9W7yCIGMrfDAFCg+r95nN6ujimlfV76c8AxMflOTFlUUPgSs/Br0b7PoKfn/y+H37flZb+ht9YOy9p97Usa35hKpT75Yk+/enbD6EpYC3a6gPAV5Ge0coHMwyCrN0Z6bLjcI4ZwKTdwD+d476gu8VBDf8CAmX2vccJyYxy+6XJEYct2cprHhMvT7lGbV5WUvFDod/LFc/6eYfVBveHdsBP911fHTxglfUBF24vp6T1eJrUHsGbXhHfW1Z9ax626g7wDfs5E0dtRI1sL4+EFj7f2QfSrRps79d1voXGX1xRX07ue4ojPNVCB5eD4uvhspCdR+PWd86bpnhoGsAnVpkubW+m+YFr0jtQUeXuV1dBo2iNiyz7ELcGmG94eYVamO6nGR4d6LaP0Snh0vegkFXt/4cHVBheQ3Lk7KY1i+KAG8n+vQ/6BooyVQ3m/z1ITVhzUkCjwB13yaga0B9MzsNR2Aqa0ws3ZnJ55ui+KdpCOcatvH9hy+xQH8tPSL86BnuS89wX3pF+NEj3JfoQC/0+sYjhDuOFAFS/+LK7j6nJ78mZbF0Zyb3nNODHuGusSLJuRKY3d/B97eDqRqih8HVi9XiOEeyvHFYkxgFLnhVkhitVRZCQeqpV++cNMVywvcGo1qP4Olv+3mLj8LnM9WdjrufA9NetN+Ujn8nuOln+OIaSF8HeiNc/j70vcQ+x+9gzGaF2R9vYcvhQj5Ym8rH/xhJZIATbSI47l9Qekxd9bjjc/W2MXepo8oc39SxoKqA4upiAjzaLgE4kF3KZxvT+W7bUUqq1F21vzdM4FzDNqYb1vBC9VXsOFJkTU4svN0N9Aj3pWe4Hz0jfOkV4csOawFvYJvFL+yrbyd/piZEsDwpm9d/P8jrV7dgulwDzpHAKIq63HTl4+r38RfCZe+Bu3fbnH/Q1eqb1Pe3w9aP1NskiXG8uhooTFWnDPMPQv4ByKv/WpF/5uefSUBnCO8D4fEQ3le9Htrr9E3hqkvVZmRlWerjr/jI/suYvYLguu9g8/vqirrOI+17/A7km21H2XK4EID92WXMeHsdn94ykq6hPhpHVk+ng2kvqFub7F0K3iGNmh96G70J9w4npyKH1OJUBoUPcmg4VbUmft2dxWcbD7M5rdB6e0yQF1eP6MwVg86Cdz8isrKQNZfDDo8h7M8u40BOKQeyy0jJK6OixsTOo8XsrO/70vBHTejUgg8MwmncfU5Plidl89POTO52kVEY7RMYUx38+uDxBnMjb1d3TtUb2jaOgTMBHXx/m5rEKIraZVOSmNarKIDspMYJSv5BtZhVaWLVg29k4yS20by8cprbUUdPynOhOF29HFh+/D6dXh2dCe9zPKkJ66NOV359E2TvVhvRXfNly0ZwmsPoZZ1GEC1TWF7D/J/3APCPsV1ZtTebtPwKLn97HYv+McJ5VsPoDWoB+Lo3oMuYk5bgdw3oSk5FDmklaQ5LYFJyy/h8YzrfbjtKYYU6omnQ6zgnPpxrRnZmfM+w49NC/S6Hze/RKe0HOl1+EdP6Hz9OnclMWn4FB3NK6xObMg5kl5KSV87UhEh8PLR/OxEtl9ApgCl9I1iRnM2CVQf5v5nOPwpj81/c/Pnz+e6779i7dy9eXl6MGTOG559/nt69e9t+9ppyWDpb7a6LTk1cRv/T9uPYy8Cr1K8/3A7bFmGdTpJmYi1TeFhdYZP4mdoW/1TcfSGkh3oJ7Xn8a3D31u39U1EAuXvVepOcPfWXZHVqKv+getnz0/HH6/RqTYqbl7pcOrBzy88tHO6F5XsprKild4QfD58fzz8ndeeGDzaRlFnCzHc38N71wxjdPUTrMFVGL5jw71PeFecfx8ZjG+2+lLqmzsyK5Cw+25DO+pTjo5mdAjyZOaIzVw6LPfV026Cr1S1X9i5VGzh6Hk8E3Qx6eoT70iPcl/P6HX+KoijoZOVcu3D3OT1ZkZzNjzsyuevsnvQId+7912x+Z169ejV33nknw4cPp66ujkceeYQpU6aQnJyMj4+NQ7efXg5Fu8HNEy571zlqARolMR9Dfopap9BUa3DRWP4h+PsVtYGbWZ1fJ7CLWsga0lMtyg7poV73i3TMsmHvYPUTb5cxx29TFCjLaZDU1H/N3avu+KzTq3+H0UPtH4+wm23phXyx6QgAz1zaD6NBT6ivB4tvHcUti7awMbWAGz7cxIKrBzM1wbn/3VoKee21EslsVli0Po03/zhIXpn6oUGng0m9w5k1sjMTe4dj0Dfx763TEAjtDXn7IOl7GHrjGc8pyUv70S+64SjMAacfhdEptqyXO4Xc3FzCw8NZvXo148ePb9ZzSkpKCAgIoPghP/wDQ9Th+tgRrQnD/pKXwA//VN/YfMLUmpzuk7SOyrnl7oO/XoLd36ijGaDu0Dz+AYgbq2loTTKboeSoGnNQnNbRiCbUmcxc/MZako+VcPnQGF66YmCj+6tqTdz9xXZWJGej18Fzlw3gyuGxGkV7Zusy1nHbb7fRLaAbS6YvadWxjhRUMPfrHWxMLQAg3M+DmcNjuWpEZ6IDbdgMdM2ranPF2FFw8/IzPly0L7szirlwwRp0Olh534STRmGs79/Fxfj7a1v31OoCj+JitZgrODj4tI+prq6mpKSk0QVQ3yxu+c35khdQR4Nu/VPd6Kw8Fz65FP6Y16JOle1e1i519+Q3R6rNuxQz9JwKN/8G1y9x7uQF1DqnwM6SvLiAj9cfJvlYCQFeRh6eFn/S/Z5GA2/NGsKVw2IwK/DAtzt5Z/UhDSJtHkszu/TSdOoso5U2UhSFLzalc95rf7ExtQBvdwP/nd6PtQ+dzf1TetuWvAAMuEodjTyyQR1NFR1Kv+gAzu0bgaLAG6uce4+kViUwZrOZe++9l7Fjx9KvX7/TPm7+/PkEBARYL7Gx9Z+IrlsCId1bE4JjhfZUE6whNwAKrH4ePpkOpdlaR+YcMrape6i8c5Y6YoWiriC7dTXM+kpt4CaEnWSXVPHKyv0APHhePCG+Hqd8nJtBz/MzBnDbhG4APPfLXub9vMem5mxtJdInEk+DJ3Xmlm3qmF1SxT8+2szD3+2ivMbE8LggfrlnHNeN6oLR0MKXd/9O6sgpwI7FLTuGcGn31Hfn/XFHJgdzmtjDTWOtSmDuvPNOdu/ezeLFTf+RP/zwwxQXF1svR46o89f4OEmRXVOMXnDx6+oUktEHUv9S37BTVmsdmXbSN6oN2d6bpLZHRwcJl8Ed69S25J0GaR2haIeeWbaHsuo6BsYGMvMM00I6nY6Hp/WxjtK8+1cKD3yzkzqTc3Xb1uv0dPZXC8ZtKeRVFIUliRlMefUv/tiXi7ubnkfP78PiW0fTJcQOy8gHXqN+3bFYOpR3QP2iA5jcJwKzk4/CtDiBmTNnDkuXLuWPP/4gJiamycd6eHjg7+/f6OJyBlypTimF94XyHHUk5s/nO9aU0tEtsOgidT+fg7+pOy0PvBrmbIYrPoSIBK0jFO3U3wdy+WlHJnodPDu930ndYE/ntgndeeHyAeh18PXWo9zx2Taqap3r36ytHXkLymuY8/l27lmcSHFlLf2jA1h211nMHt+t6QJdW8RfAO5+ahuCw2vtc0zhUu6dfHwU5lCuc47C2JzAKIrCnDlz+P7771m1ahVdu3Z1RFzOKawX3PI7DL5WrfP4cx58epm68WR7d/B3+HCaOgKld4Mh18NdW+DSd9SpNiEcpLrOxONLkgC4fnSczT1erhwWyzvXDsXdTc/K5Gxu+GATJVWn6PCsEVv2RPotOZspr/7Fsl3HcNPruG9yL7775xh6Rti56Zi7NyRMV6/v+MK+xxYuofEojHPukWRzAnPnnXfy6aef8vnnn+Pn50dWVhZZWVlUVlY6Ij7n4+4Nl7wJ098Bozek/KlOKaWt0Toyx0n9GxZfo/Zy6XUe3J2oblYX3E3ryEQHsHB1Cql55YT5eXD/lF4tOsaUhEg+/scIfD3c2JhawMyFG8gtrbZzpC1jKeRtKoEpqapl7tc7uOXjLeSVVdMz3Jfv/zmWeyb3bHmty5kMmqV+TV6i9uwSHY6lFmZJYoZTjsLY/Jf/9ttvU1xczMSJE4mKirJevvzyS0fE57wGXQ2z/4CweLX1/KKL4K8X2998cfoGtb1+XZW6sujKTyDQeZelivblcH45b/yhfvp77II++Hu2fMPGUd1CWHzrKEJ93Uk+VsJlb6/lq81HNJ9SOtMU0tqDeUx77W++2XoUnQ5uG9+Nn+46i/6O3jyx8ygI6qq2kmjY9FF0GP1jApjcJ9xpR2FaNIV0qsuNN97ogPCcXHg8zF6l1oEoZlj1DHw2A8rztI7MPo5uVZsN1pZD97Phyo/BzV3rqEQHoSgKT/6YRE2dmbE9Qrh4YKdWH7NfdABf3z6GmCAvjhRU8sC3Oxk1/3fm/7yHIwUVdojadidu6lhTZ+ZwfjlrD+bxnx92M+t/G8koqqRzsDdf3Taah8/vg6exDbZa0enU1zaAxM8dfz7hlO45Rx31XJKYQYqTjcK0upFdSzhTIxy72f4pLJsLdZXqhn0jb4cRt6odYV1RZiJ8fLHaTjxuHFzzVdttrikE8OvuY9z+6TaMBh2/3jue7mH2a2teXFHLF5vT+WT9YTKK1OlvnQ7OiQ/n+tFxnNUjtNmFwraqqjWRUVRJRmElRwsrySiqYHHWrdRQiGfOveQVRJ60vde1ozrz8LQ+bb/fUOFh+L8BgA7u2w0BTS/YEO3TzR9t5ve9OVw2OJonp3VzmvdvSWDsKTsZvvkH5KqbzGH0UVtxj74TAqI1Dc0m2Unw0QXqvkGxo+Dab1u3L5EQNiqvrmPyK6s5VlzFnEk9mDu1BXutNYPJrLBqbw4fr0/j7wPHR067hfpw3eguzBga0+Jpq8LyGpIyS9idWcyeYyUczq/gaGEleWUn1954dX4PN59DVGZeQV3xUDyNeqIDvegS4sONY+IY3yusxT9jq314ARxeA2f/B8bP1S4OoZmdR4u4+I216HXw/ezBDOoe7RTv35LA2JvZBMk/qO24s3apt+mN6m7XY+9V9wFyZrn74MPzoSJP3RPouh8ctyuzEKcx/+c9LPwrhdhgL1beN6FNpkwO5ZbxyfrDfLP1KGXValdcb3cDlw6O5vrRcfSOPPVKH0VROFZcRVJmCUmZxezOKCE5s5jM4qrTnsvH3UBMkDfRQV7EBHlx0LSIXaW/clGXWdw/7D5CfNydZ4+h7Z/CkjvV/cvmbHHM3mXC6VlGYS6ID+Ctm8Y5xfu3JDCOoijq0uM1rzToo6CDvhfDWfc7Z7O3/ENq8lKWBZED4IYf1ekwIdrQvqxSLnj9b+rMCu/fMIxz+kS06fnLquv4fnsGH69L40CDLqSjugVzw+g4ekX6WZOV5MwSdmcUU1hx6mXZcSHeJHQKoG8nf7qH+RAT5E1MkBcBXsZGCcqnyZ/y/ObnOafzObw26TVH/4i2qS6Fl3pBbYW6PYh02O6QLKMw1FRw+NUrneL9u40nVDsQnQ56TlYv6RvVEZn9v6hLEpOXqEWxZ90PcWc5xyeawjR1JVVZFoQnqHsYSfIi2piiKDz2wy7qzApT+ka0efIC4OvhxnWjunDtyM5sSCng4/VprEjOZkNKARtSCk75HINeR89wXxI6BZDQyZ+ETv706eTf7Okn60okG7rxthkPP+hzEez8EnZ8LglMBzUgJpCz48P5bUea1qFYSQLTFjqPhGsWq7Ula16D3d/CoVXqJXoYjLsfek1TNxXUQtERNXkpyYDQXmry4qrFx8KlfbP1KJvTCvEyGnjiYm07O+t0OkZ3D2F09xAyiyr5fGM6izenU1ZdR3ykmqT0i1YTll4Rfq2a5rL0gjlcepg6cx1ueid7aR54tZrA7P4Wps4Ho6fWEQkN3HNOT6dKYGQKSQuFabBuAWz7BEz1BX1h8TD2Huh3edsuVS45Bh+dDwUpamO6G38G/6i2O78Q9Yoqajj75dUUlNfw0LR4bp/gfBu9KoqCWcF+LfvrmRUzIz4bQbWpmmWXLrPuj+Q0zCZ4rb/6IeeKjyDhUq0jEhp5edl25l44xCnevzX6yN/BBcXBBS+ryxLPug88/CF3L/xwh7pkcc1r6vJlRyvLUZdKF6RAYGe44SdJXoRmXli+j4LyGnqG+/KPsc65RYlOp7N78gLqpo5d/LsAzd8TqU3pDTDgKvV6omwt0JHNHuc8HywkgdGSbzhMflJNZCY/Cb6RUHoMfnsCXkmA5Y9C8VHHnLs8Hz6+BPL2g3+MmrxIjwehkcQjRXyxKR2AZ6b3w92t47002bInkiYG1e9QffA39cOPEBrreK8SzsgzQB2JuXenus9SWDzUlML6N+D/BsJ3tx5fkm0PJZnqbto5yWrSdMOP6qiQEBpQFIWnfkpCUeCywdGM7BaidUiaaM6eSJoK7anW7Ckm2PmV1tEIIUW8TsXNQ93peuA16qecda9D2t9q8dzOL6HbJBhzl7qCqbkrl6rL4FgiZGytv2yD4iPqfT5h6shLiPMMCYqO58cdmWxPL8Lb3cCD0+K1DkczZ9oTySkMuhoytqg7VI+Zo3U0ooOTBMYZ6fXQa4p6ydimjsQkfQ8pf6iXiP5qItPvMjA0WKZpqoWcPY2Tldw96j5NjeggaiBMfwvCWra7rxD2UFlj4rlf9gLwz4ndifDvuKtbuvqrCYzTjsAAJFwGvz4M2bvh2E6IGqB1RKIDkwTG2UUPgcs/gHOegA1vqSuXsnfB97fC70+pWxVUFqkJy7Ed6l5MJ/KPVo8TPUztrttpkNrbQQiNvftXCseKq4gO9OKWcd20DkdTliLegqoCSmpK8Hd3whWa3sHQe5ray2rHF5LACE1JAuMqgrrAtOdhwoOw5QPYuFBd0vjHs40f5xEA0YPVRCV6KHQaIiuLhFM6VlzJO6sPAfDQtPi22WHZifm6+xLuFU5OZQ5pxWkMCHPS5GDgNWoCs/MrOPfpxqPAQrQhSWBcjXewuqHa6Dmw6yvY+zMExh5PWIK7a9cQTwgbvPjrPiprTQzrEsSFAyTJBrWQN6cyh7QSJ05gepyj1s+V56q1er2naR2R6KAkgXFVRk8Ycr16EcLFbE8v5LvtGQA8flFf59m4UGNx/nFsytrk3HUwBiP0vxI2vAmJn0sCIzQjH9WFEG1KURSeXpoMwIwhMQyICdQ2ICfi1HsiNTToavXr/l+h4tT7QwnhaJLACCHalGXZtJfRwAPn9dY6HKdi6QXj1EupASL7q6shTTXq/khCaEASGCFEm6msMfG8LJs+LUs33sMlhzGZTdoGcyaWUZgdsrWA0IYkMEKINvPe3ylk1i+bnj2+Yy+bPpUonyjc9e7UmmvJLMvUOpym9b8CdAa1hUPufq2jER2QJDBCiDaRVVzF23/KsummGPQGugSo/WBSS5y4kBfUvdx6nqte3/G5trGIDkkSGCFEm3jh171U1poYKsumm+T0mzo2NLB+Gmn7Z1BTrm0sosORBEYI4XCJR4qOL5u+UJZNN8WSwDh9IS9A7/MhsAuU58C6BVpHIzoYSWCEEA6lKApP/5QEwGVDohkYG6htQE7OZZZSA7i5w+Qn1etr/w9KjmkajuhYJIERQjjUTzuPsa1+2fSD53Xc3aaby5LAuMQUEkDCpRAzAmor4I9ntI5GdCCSwAghHKayxsRzP+8BZNl0c1mmkPKr8imtKdU2mObQ6WBq/Z5s2z+DrF3axiM6DElghBAOY1k23SnAU5ZNN5Ovuy9hXmGAi0wjAcSOUEdiUGDFY6AoWkckOgBJYIQQDtFo2fT5fWTZtA0sHXmdfil1Q5OfBIM7pPwJB1ZqHY3oACSBEUI4xAvLjy+bvkiWTdvEuhLJVUZgAILiYORt6vUVj4GpTtNwRPsnCYwQwu52HCniu22ybLqlrCuRXGEpdUPj5oJXMOTtg22LtI5GtHOSwAgh7KrhbtOybLplXKqZXUNegTDxIfX6H/OgqkTTcET7JgmMEMKuftp5jK2HC9XdpqfKsumWsNTApJekO/+mjica9g8I6QEVebDmVa2jEe2YJDBCCLsoqarly83pPFM/+nLHxO5EBsiy6Zbo5NMJd707NeYaMsudfFPHExmMcO7T6vUNb0HREW3jEe2Wm9YBCCFcV63JzN8HcvluWwYrk7OprjMD0CXEm1tl2XSLGfQGOvt35mDRQVKLU4n1i9U6JNv0Ph+6nAWH18DvT8OM97SOSLRDksAIIWyiKApJmSV8u+0oP+3IJK+sxnpfz3BfLhsSw5XDYmTZdCt1DejKwaKDpBWnMT5mvNbh2Eang6nPwLsTYddXMOp2iB6qdVSinZEERgjRLJlFlfyQmMH32zI4kFNmvT3U152LB0Zz2ZBoEjr5y4ojO+kWoI5grTu2jusTrtc4mhboNBgGzISdi2H5Y3DTz2piI4SdSAIjhDitsuo6ft2dxXfbjrI+Jd/aYNXDTc+5fSOYMSSGs3qGYjRIOZ29Xdz9Yv6363+szVhLYk4ig8IHaR2S7c75DyT/AOnrYO9S6HOR1hGJdkQSGCHasVqTmdX7ctlyuJCaOjMms5las0KdyUydSaHWrKi3mepvMyvUmRTq6m/bm1VCVa3ZeryRXYO5bEg00/pH4e9p1PAna/86+3dmeo/pfHvgWxZsX8D7U9/XOiTbBcTA6Dnw90uw8nHoOVXdwVoIO5AERoh2KCmzmG+3ZrAkMYP88pozP6EJ3UJ9uGxINJcMiiY22NtOEYrmuG3Abfx46Ec2ZW1i47GNjIwaqXVItjvrXtj2MRSkwJb3YdQdWkck2glJYIRoJ3JLq1mSmMG32zLYc+x4A7FQX3emJEQS4GXEqNdh0OtxM+gwGnS41V93O/E2vQ43g56oAE+pa9FQlG8Ul/e6nC/2fsGC7QsYETnC9f5bePjBpEdg6b2w+nkYOBO8grSOSrQDksAI4cKq60z8vieHb7ce5c/9uZjMapGKu0HP5L7hzBgSw/heYVKj4sJm95/N9we+Z0fuDv7O+Nv1ViQBDL4ONi6E3D3w10sw9VmtIxLtgCQwQrgYRVHYcbSYb7ce5ccdmRRX1lrvGxgbyOVDorloYCcCvaXWoD0I8w7j6vir+TDpQ97Y/gbjose53iiMwQ2mPAOfzVATmeE3Q7D0CRKtIwmMEC6ipKqWzzak883WIxzKLbfeHunvyaVDopkxJJoe4X4aRigc5aZ+N/Hlvi/ZU7CH39N/Z3KXyVqHZLuek6H72XBoFfz2JFz5sdYRCRcnCYwQTs5sVvhuewbP/bKXvLJqADyNeqYmRHL50BjGdA/FoHexT+TCJkGeQVzX9zoW7lzIm4lvMil2Ega9CzYKnPIMvHMWJC+B9A3QeZTWEQkXJhPjQjix3RnFXP7OOuZ+vYO8smq6hfrw/Iz+bH50Mv83czDjeoZJ8tJBXJ9wPX7ufhwsOsgvab9oHU7LRCTA4GvV68sfxdpYSIgWkARGCCdUWF7DI9/v4qI31rAtvQhvdwMPTYvn13vHc9XwzvhJD5YOx9/dn5sSbgLg7cS3qTXXnuEZTmrSY2D0gYwt8MuDcPB3qCzUOirhgnSK0vYpcElJCQEBARQXF+Pv79/WpxfCaZnMCp9vSuel5fusxbmXDOrEw9P6yM7OgoraCqZ9N42CqgKeGvMUl/W8TOuQWmb1i/DHM41vC+kB0cPUPZNihkJEf2l654Sc6f1bEhghnMSWtAIeX5JEcn0Pl/hIP566OIGR3UI0jkw4k4+TPubFLS8S5RPF0kuX4m5wwTd5sxkSP4PU1XB0CxSmnvwYgztEDoCY+qQmeqi6csnVVmC1M870/i0JjBAayymp4rlf9vLd9gwA/D3dmDu1N9eM6Iyb9G8RJ6iqq+KC7y4gpzKHR0Y+wtXxV2sdUuuV50PmNjWZydgCGVtPPa3kFQQxI2DsPRA3tu3jFE71/i0JjBAaqakz89G6VF7//SBl1XXodDBzeCxzp/QmxNdD6/CEE/ty75c8s/EZQr1C+fmyn/Fy89I6JPtSFHXrgYyt6uXoFsjaCaYG22IMuArO/S/4RWgXZwfkTO/fksAI0cbMZoW/DuTy36XJ1n4ug2IDeeriBAbGBmobnHAJtaZaLvz+QjLLM5k7bC43JNygdUiOV1cN2bth6yJ1byUU8PBXtykYPlttlicczpnevyWBEaINVNWaWHcoj5XJ2fy2J4fcUrWfS4iPOw9Oi+fyITHoZTm0sMH3B77n8XWPE+QRxC8zfsHH6KN1SG3n6Fb4+V+QuV39PjwBLngJuozRNq4OwJnevyWBsbPiylpyS6sx6HUYdDr0ehpcV78aDPVf9Tr01q+4Xntw0aTC8hpW7c1hZXI2fx3IpaLGZL3Pz8ONK4bFcs/kngR4yZJoYbs6cx3Tl0zncMlh5gyaw20Db9M6pLZlNqkjMb8/dbxeZsBMOPdpmVZyIGd6/5YExg4URWFTagGfbUzn191Z1JjMLTpOj3BfxnYPYUyPUEZ1C3H5NzazWaG4spbCihrC/Dw6RO+SIwUVrEjOZmVyFpvTCq2bK4La8v/cvhGc2zeCUd1CcHeTAl3ROj+n/MyDfz+In9GPX2b8QoBHgNYhtb3yfDWJaTSt9CgMv0WmlRzAmd6/JYFpheKKWr7ddpTPN6VzMKfMerufpxsoYFIUTGYFs6JQZ1Zsajqp10H/6ADG9AhlbPdQhsUF4WnUtnV4rclMVnEVBeU1FFTUUFheQ0F5DYUVNRSU11JQXk1hea31vsKKGizv30aDjtHdQ9U38D4R7aaniaIo7M4oYWVyFiuSs9mbVdro/vhIP6b0jeDcvpH0i/aXUTZhV2bFzIwfZ3Cw6CCz+8/m7iF3ax2Sdk6cVoroB+e/BF1GaxtXO+NM79+SwNhIURS2Hynisw3pLN2ZSXWdOtriZTRwyaBOXDOyMwNiAk/7XJNZwaQomM0NEhyzQlWdiR1Hilh7MJ+1h/JIabBZH4C7m56hnYMY20MdoRkQHeDwJbZms8KerBLW1ce0KbWg0TRIc3m7G0563sDYQKb0jWBqQgTdw3yd9o1dUdRRpKOFlRwtrKj/Wmn9PqOwktLqOuvjDXodw+OCOLdvJFP6RhAb7K1h9KIj+D39d+7941683Lz4dcavBHsGax2Sdswm2LYIfnsKqorU2wZeA+c+Bb7hmobWXjjT+7ckMM1UWlXLD4mZfLbhcKNP2fGRfswa2ZlLBkfjb8cpkmPFldbEYd3BfLJKqhrd7+fhxshuwYzuHkrvCD+6hHgTFeDZqqRGURQO51dYz7k+JZ+C8ppGj3F30xPi406QtzshvurXYB/LVyNBPur3wT7uBHu7E+jtjrubnoM5ZaxMzmZFchbb04saHbNrqA9T+kYwJSGCQbFBbb63j+XnTj5WYk1KGiYp5WdI2rzdDUzoFca5fSOY1DucIB8XbCwmXJaiKMxcNpPk/GRu6HsDc4fP1Tok7Z00rRQA4+dC34shKE7r6FyaM71/SwJzBruOFvP5psMsScy0jiJ4uOm5YEAUs0Z2YUjnQIePHiiKQkpeOesO5rG2PrGwtJlvyGjQERPkTedgb+JCvOkc4kNciDddQryJCfI+5RRUTmmVmigdzGPdoXwyiiob3e/tbmBk12DG9ghlTPdQ4iP9Wr1aJqekit/25LAiOYt1B/Mb1QyF+nowuU84UxIiGNM91CHTZmazwsHcMjamFrAxJZ9NqQXk1K8KOp0wPw+iA72ICfIiJsibmCAvooO8iA3yIjbYGw83F9wZWLQbazLWcMdvd+Bh8ODny34m3FtGGwC1f8yyf8GxxOO3BXaGruOh6wSIGwf+UZqF54qc6f1bEphTOFJQwe97svluewY7jxZbb+8e5sM1I7swY0g0gd7afco2mRWSM0tYeyiPLWkFpOaVc6SgssniYZ0Oovw96RziTZdgHzyMejak5LM/u6zR44wGHYM7BzG2eyhje4QwMDYQowOnqkqralm9P5eVydms2ptDadXx6RhvdwPxkX7EhfjQJcSHuFBv4kJ8iAvxIcC7+aNdJrPCnmMlbKhPVjanFVBY0TgBdDfo6dvJn87B3iclKdGBXprXHwnRFEVRuOHXG9ies52rel/FY6Me0zok52E2wfZPYMdiOLoZzHWN7w/tVZ/QjFcTGu8OPAXXDM70/i0JDFBnMrP9SBG/78nh9z3ZHGhQkGs06JjWL4prRnZmZNdgp63VMJkVskqqOJxfTnp+BWn5FaQXlHM4v4LD+RWUVded8nk6HSR08mds91DG9AhleFwQ3u7aVO7X1JnZmJrPiqRsViZnnzRt1lCgt5EuIT50DfG2Jjfq9z74eLixK6OIjakFbEotYGtaYaM6FVBrloZ2CWJE12BGdg1mYGygJCnCpW3O2sw/lv8DN70bSy9dSrRvtNYhOZ/qMjiyAVL/Ui+ZicAJb4GR/dXRma7jofNo8NT+PcqZONP7d4dNYIora/lrfy6r9ubwx74cihp8IjfodQzrEsS5fSOYPjiaUBdv664oCgXlNRwuqOBwvprUlFXVMbRLEKO6hThlzYaiKOzNKiUlt5y0/HLS8tS40/LLzzjdo9eB+YS/aj9PN4bHBTOiq3rpHx3g0JElIbRwy4pb2HhsI5f2uJSnxz6tdTjOr7IQDq87ntDkJDe+X2eAqIEQOxI6j1S/+nfSJlYn4Qzv3xYtTmDefPNNXnzxRbKyshg4cCALFixgxIgRzXquVr+AlNwyVu3N4fc9OWxOK6CuwbtcgJeRib3DODs+nIm9wm2aohBtq7y6jvSCCtLyyknLV5OytPrE7FixOmoT7OPOiPqEZWS3YOIj/du8OFiItrYjdwfX/nwtBp2Bi7pfRP/Q/iSEJtArsBdGg7ymnVFZDqT9fTyhKUg5+TEBsWoiY0lqwhM6VL8Zl09gvvzyS66//nreeecdRo4cyWuvvcbXX3/Nvn37CA8/c/FYc34BJrNCaVUtJZV1FFfWUlJVS0llLbX1y44ty5HVpcnUL00+3nfFXH+7WVHIK6tm9b5cUvIaL03uEe7LOfHhnB0fztAuQbLzbztQVWuioLyGqABPp53uE8KR5q6ey/K05Y1uc9e7Ex8cT7/QftZLF/8u6HXymtek4qOQvgGObFS/Zu8G5YRaQ6MPxAyF2FFqUhMzDLwCNQm3Lbh8AjNy5EiGDx/OG2+8AYDZbCY2Npa77rqLhx566IzPt/wCHvlyIzU6D2uCUlxZR0mlmqicWLNgD0aDjpFdQzg7Ppxz+oTTJaQD7R0ihOgQ6sx1rMlYw668XezO283uvN2U1JSc9Dg/ox99Q/vSP7Q//ULUpCbCR1rwN6m6DDK2wJFNalJzZDNUF5/wIB2E94GAGHD3qb/4gtH7+HXr7T6neIy3+tXgrhYpOhmXTmBqamrw9vbmm2++Yfr06dbbb7jhBoqKiliyZMkZj2H5BcTe+xV6j6YbfXm7G/D3NBLgZcTP0w2jQa/uHaTXYdCBvuEeQ3odOt3Jew95GvWM7BbCuJ6hHaKdvRBCWCiKwpHSI40Smj0Fe6g2nVxL5uXmhZebF+4GdzwMHupXvfrV083Terv1vvqvBp2h0fms108okG30vdL4NsvzrN+fcPupWEZZdZb/6dSv9Tc2ut3yOLtSFKjIh5IMKMlUv1oa6LWaXp2a0hsbfDWCvsF1g1G9rm+4AMHyiz3x96Y0+GK5blZXaZnrjn9VTCffZjaBon6tqqjhwYeOOkUCY/PEXV5eHiaTiYiIxpl6REQEe/fuPeVzqqurqa4+/o+lpET9NHDTWXFEhARZExR/r/qvnm71CYtR9osRQohW0Ol0dPbvTGf/zlzQ7QIAas21HCo6xK68XSTlJbErbxcHiw5SWVdJZV3lGY4oTssT8HTUflS19RfU/KOu/mJvOsBQf7E6foPJ6DyLWtqk8mj+/Pk89dRTJ93+r3N7a57BCSFER2PUG4kPjic+OJ4rel0BQEVtBbmVudSYaqgx1VBtqqbaVH3K6zWmGqpMVdbvzSfUhTSsPztx1KPh9yeNjOgaP8b69YTHKSiNRmwUFNT/Hx+1sf6v7Rfato5iAlNd/chHbYPrp/neXKfe1mi6yfKLPHHEqeHvWade9AZ1VEenrx/dMagXnaHBfQbr7VUVdTzJHof/GprD5gQmNDQUg8FAdnZ2o9uzs7OJjIw85XMefvhh7r//fuv3JSUlxMbG2npqIYQQDuJt9KaLsYvWYQgnV1JSwpO8oHUYANg8P+Pu7s7QoUP5/fffrbeZzWZ+//13Ro8+9a6fHh4e+Pv7N7oIIYQQQrRUi6aQ7r//fm644QaGDRvGiBEjeO211ygvL+emm26yd3xCCCGEECdpUQJz1VVXkZuby+OPP05WVhaDBg3i119/PamwVwghhBDCETrsVgJCCCGEsI0zvX/LGmUhhBBCuBxJYIQQQgjhciSBEUIIIYTLkQRGCCGEEC5HEhghhBBCuBxJYIQQQgjhciSBEUIIIYTLkQRGCCGEEC5HEhghhBBCuJwWbSXQWpbmvyUlJVqcXgghhBAtYHnf1qCJ/0k0SWDy8/MBiI2N1eL0QgghhGiF/Px8AgICNI1BkwQmODgYgPT0dM1/Ae3B8OHD2bx5s9ZhuLSSkhJiY2M5cuSI5vt7tAfyN2k/8ru0D/k92kdxcTGdO3e2vo9rSZMERq9XS28CAgLkzcIODAaD/B7txN/fX36XdiB/k/Yjv0v7kN+jfVnexzWNQesAROvdeeedWocgRCPyN2k/8ru0D/k9tj86RYNKHGfajlsIkL9JIYRoDmd6rdRkBMbDw4MnnngCDw8PLU4vxEnkb1IIIc7MmV4rNRmBEUIIIYRoDamBEUIIIYTLkQRGCCGEEC5HEhiN/PXXX1x00UV06tQJnU7HDz/80Oj+srIy5syZQ0xMDF5eXvTt25d33nnnjMfduXMn48aNw9PTk9jYWF544YWTHvP1118THx+Pp6cn/fv35+eff7bXjyXagTfffJO4uDg8PT0ZOXIkmzZtanT/+vXrOfvss/Hx8cHf35/x48dTWVnZ5DH//PNPhgwZgoeHBz169OCjjz6y+byupKl/37W1tTz44IP0798fHx8fOnXqxPXXX09mZuYZj9vRfo8gr5WiCYrQxM8//6w8+uijynfffacAyvfff9/o/tmzZyvdu3dX/vjjDyU1NVVZuHChYjAYlCVLlpz2mMXFxUpERIQya9YsZffu3coXX3yheHl5KQsXLrQ+Zu3atYrBYFBeeOEFJTk5WXnssccUo9Go7Nq1y1E/qnAhixcvVtzd3ZUPPvhASUpKUmbPnq0EBgYq2dnZiqIoyrp16xR/f39l/vz5yu7du5W9e/cqX375pVJVVXXaY6akpCje3t7K/fffryQnJysLFixQDAaD8uuvvzb7vK6mqX/fRUVFyuTJk5Uvv/xS2bt3r7J+/XplxIgRytChQ5s8Zkf8PSqKvFaK07M5gVm9erVy4YUXKlFRUSf9MdXU1CgPPPCA0q9fP8Xb21uJiopSrrvuOiUjI+OMx/3jjz+UwYMHK+7u7kr37t2VDz/88KTHvPHGG0qXLl0UDw8PZcSIEcrGjRttDd8pneofZUJCgvL00083um3IkCHKo48+etrjvPXWW0pQUJBSXV1tve3BBx9Uevfubf3+yiuvVC644IJGzxs5cqRy2223teIn0F5TfxuVlZXKP//5TyU4OFjx8fFRLrvsMiUrK+uMx/zqq6+U3r17Kx4eHkq/fv2UZcuWNbrfbDYr//nPf5TIyEjF09NTOeecc5T9+/fb/WdrSyNGjFDuvPNO6/cmk0np1KmTMn/+fEVR1L+Vxx57zKZjPvDAA0pCQkKj26666ipl6tSpzT6vKzvVv+8Tbdq0SQGUw4cPn/YxHf33qCjyWmkP7em10uYppPLycgYOHMibb7550n0VFRVs27aN//znP2zbto3vvvuOffv2cfHFFzd5zNTUVC644AImTZpEYmIi9957L7fccgvLly+3PubLL7/k/vvv54knnmDbtm0MHDiQqVOnkpOTY+uP4BLGjBnDjz/+SEZGBoqi8Mcff7B//36mTJlifcyNN97IxIkTrd+vX7+e8ePH4+7ubr1t6tSp7Nu3j8LCQutjJk+e3OhcU6dOZf369Y79gRzoTH8b9913Hz/99BNff/01q1evJjMzk8suu6zJY65bt46rr76am2++me3btzN9+nSmT5/O7t27rY954YUXeP3113nnnXfYuHEjPj4+TJ06laqqKof+vI5SU1PD1q1bG/196PV6Jk+ezPr168nJyWHjxo2Eh4czZswYIiIimDBhAmvWrGl0nIkTJ3LjjTdavz/T39yZztsRFBcXo9PpCAwMtN4mv8fmkdfK5mt3r5WtyX6QTxZ2carfY1VVlXL99dcrgOLm5qa4u7srixYtavSYhx56SLnuuuus35977rnKrbfe2ugxSUlJCqAkJycriqIoRqNR+fzzzxs95s0331TCw8Pt+BO1rab+NoqKihSj0ah8/fXX1vv37NmjAMr69etPe8wzffoym81KZGSk8uKLL1rvLyoqUjw8PJQvvvjCXj9am8rIyFAAZd26dY1u//e//62MGDFCWb9+vQIowcHBygcffKBs27ZNuffeexV3d/dGn6auu+465aGHHrJ+37NnT2XevHmNjrls2TIFUCoqKs54Xld3ptfJyspKZciQIco111zT6Hb5PZ5MXitbp729Vjq8iFc+WbTMggUL2LBhAz/++CNbt27l5Zdf5s477+S3336zPmb+/Pl8/PHHGkapvTP9bWzdupXa2tpG98fHx9O5c+dGfztxcXE8+eST1u/P9DeZmppKVlZWo8cEBAQwcuTIdvs3aTabAbjtttu46aabGDx4MK+++iq9e/fmgw8+sD7u448/Zv78+VqF6VJqa2u58sorURSFt99+u9F98ntsHnmtbJ72+Frp0M0cq6qqePDBB7n66qsbtRzu3LkzUVFR1u+zsrKIiIho9NyIiAhKSkqorKyksLAQk8l0ysfs3bvXkT+CJiorK3nkkUf4/vvvueCCCwAYMGAAiYmJvPTSSyf9sVhERkaSnZ3d6DbL95GRkU0+xnK/q8nLy2vybyMrKwt3d/dGCbTl/qysLOv33bt3JzQ01Pr96f4mLc+xfG3qMf/f3r0HVXHdcQD/Xi9e3i8JjyDPqCCP+Eji46pRC1WJ9YHixKhTQMlELKiIMRMnUaCVkE61KSaQNsSqqRpR4qNFxoTwrg01UEAQRI2imQajTcURUKHw6x+WTTaAYATNpd/PzB1nd8/+9pzrcua3Z8/dNTSPPfYYtFptt+dHx9+sr6+varuPjw8uX77cbdzuzjkrKyuYmppCq9Xe87gDVUfycunSJeTm5vb4WHZ+j52xr+y9gdhX9tsIDK8sfrjW1la0trZ2etunVqtVroK7otfrUVhYiNbWVmVddnY2vL29YWtrq5TJyclR7ZednQ29Xt+HLTA8OTk5iI6OftTVeKR0Oh2efvpp1fnR3t6OnJwc6PV6eHh4wNnZGbW1tar9zp49C3d3927j9nTO9XTcgaijfzx37hw+/fRT2NnZ9bgPv8fO2Fc+fD+mvrJfEpjvXllkZ2c/8JVFT1eGhqixsRHl5eUoLy8HcHeYrby8HJcvX4aVlRWmTZuGDRs2ID8/HxcvXsSuXbvwwQcfYMGCBUqMjRs3IjQ0VFleunQpdDodIiIicPr0aaSnpyM5ORmxsbFKmbVr1+L48ePYtm0bzpw5g/j4eJSUlPxoTsj71dO54eTkhJaWFjQ0NHS5vTs9XX11/DuQzkkAiI2NRVpaGnbv3o2amhqsWrUKTU1NWL58OTQaDTZs2IDt27cjIyMD58+fx6ZNm3DmzBlEREQoMUJDQ7Fx40ZlOTIyEhcuXMArr7yCM2fOIDU1FQcOHMC6det6dVxDdK+/79bWVixatAglJSXYu3cv2tracOXKFVy5cgUtLS1KDH6Pd7Gv7BsDsq98kAk06GJCVUtLiwQHB4ufn59cvXq1V3E6fnr9XUuWLOk0iTc6OlpZbmtrk6FDhxrsJN68vDwB0OkTFhYmIiL19fUSHh4uzs7OYmJiIt7e3rJt2zZpb29XYoSFhcm0adNUcSsqKmTKlClibGwsQ4cOlTfffLPTsQ8cOCBeXl6i0+nEz8+v00/eDM29zo2OiWkZGRnK9jNnzvRqYtqcOXNU6/R6faeJaVu3blW237hxw6An8XZ4++23xc3NTXQ6nYwfP16Ki4tV25OSksTFxUXMzMxEr9dLUVGRavu0adOU87hDXl6ejBkzRnQ6nTzxxBNdPiahp+Maknv9fV+8eLHLbQAkLy9PicHv8S72lX1noPWV953A3Lx5U8rKyqSsrEwAyG9/+1spKyuTS5cuSUtLi8ybN09cXFykvLxc6uvrlc93f2///dn1HQ9o2rBhg9TU1EhKSkqXD2gyNjaWXbt2SXV1tbz00ktiY2PTq9+o08DW07kRGRkpbm5ukpubKyUlJaLX60Wv16tiBAQEyNtvv60snzhxQoyMjGTr1q1SU1MjcXFxnR5i9eabb4qNjY0cPXpUTp06JfPnzxdPT0+5devWw2k4EdF9GGh95X0nMLyyoB+je50bHQ9nsrW1FTMzM1mwYIHU19er9nd3d5e4uDjVup6uvjoezuTo6CjGxsYSGBgotbW1/dZGIqIHNZD6So2IyIPdhCIiIiJ6uPgyRyIiIjI4TGCIiIjI4DCBISIiIoPDBIaIiIgMDhMYIiIiMjhMYIiIiMjgMIEhg5KUlIRx48bB0tISDg4OCA4OVr2bp66uDhqNpsvPwYMH7xk7LS0No0ePhoWFBWxsbDB27Fi+s4uIDFJPfSVw90WLP//5z+Hk5ARzc3M89dRT+Oijj3qMffjwYUycOBHW1tawtLSEn58fYmJi+qkl3WMCQwaloKAAUVFRKC4uRnZ2NlpbWzFz5kw0NTUBAFxdXVFfX6/6JCQkwMLCAs8991y3cf/4xz8iJiYGa9asQXl5OU6cOIFXXnkFjY2ND6tpRER9pqe+Erj7vq3a2lr8+c9/RmVlJRYuXIjnn38eZWVl3cbNycnB4sWLERISgpMnT6K0tBSJiYmqF2M+NA/8KDyiR+jq1asCQAoKCrotM2bMGFmxYsU948yfP1/Cw8N7PF5aWpqMHDlSjI2NxdvbW1JSUpRtHU+i/vDDD0Wv14uxsbH4+flJfn5+7xtERNQPuuorzc3N5YMPPlCVGzJkiKSlpXUbZ+3atTJ9+vQej3fkyBEZO3asGBsbi6enp8THx0tra6uyHYCkpqZKUFCQmJiYiKenpxw8ePC+2sQRGDJoN27cAAAMGTKky+2lpaUoLy9XvS25K05OTiguLsalS5e6LbN3715s3rwZiYmJqKmpwRtvvIFNmzZh9+7dqnIbNmzA+vXrUVZWBr1ej7lz5+Kbb765z5YREfWdrvrKSZMmIT09Hf/+97/R3t6O/fv34/bt25g+fXq3cZycnHD69GlUVVV1W6aoqAihoaFYu3Ytqqur8Yc//AG7du1CYmKiqtymTZsQEhKCiooKLFu2DC+88AJqamp636j7SneIfkTa2trkZz/7mUyePLnbMqtWrRIfH58eY3311VcyceJEASBeXl4SFhYm6enp0tbWppQZNmyY7Nu3T7Xfr371K+VlZx0jMN99q21ra6u4uLjIr3/96/ttHhFRn+iur7x+/brMnDlTAIiRkZFYWVnJxx9/fM9YjY2NMnv2bAEg7u7usnjxYtmxY4fcvn1bKRMYGChvvPGGar8//elP8vjjjyvLACQyMlJVZsKECbJq1apet4sJDBmsyMhIcXd3ly+//LLL7c3NzWJtba16jbuIiK+vr5ibm4u5ubkEBQWptlVWVkpKSoosW7ZMTExMZMaMGdLW1iaNjY0CQExNTZV9zc3NxdjYWBwcHETk2wTm+7ezgoODe3V7ioioP3TXV0ZHR8v48ePl008/lfLycomPjxdra2s5deqUiIgEBQUpfZ2vr69q3/Pnz0taWppERESIjY2NjBo1SpqamkRE5LHHHhMTExNVX2liYiIAlDIAZPfu3aqYMTExvbo91cGo92M1RD8e0dHRyMzMRGFhIVxcXLosk5GRgebmZoSGhqrWZ2VlKRPOTE1NVdv8/f3h7++PX/ziF4iMjMSzzz6LgoIC+Pr6Arj7S6UJEyao9tFqtX3VLCKiPtVdX/nFF1/gnXfeQVVVFfz8/AAAo0ePRlFREVJSUvD73/8e77//Pm7dugUAGDx4sCrusGHDMGzYMLz44ot47bXX4OXlhfT0dCxfvhyNjY1ISEjAwoULO9XHxMSkz9rGBIYMiohg9erVOHz4MPLz8+Hp6dlt2R07dmDevHmwt7dXrXd3d+/VsTqSlqamJjg6OsLZ2RkXLlzAsmXL7rlfcXExpk6dCgD4z3/+g9LSUkRHR/fqmEREfaGnvrK5uRkAMGiQeiqsVqtFe3s7AGDo0KG9OpaHhwfMzMyUXzg99dRTqK2txfDhw++5X3FxseoCs7i4GGPHju3VMQEmMGRgoqKisG/fPhw9ehSWlpa4cuUKAMDa2lo1mnL+/HkUFhYiKyurV3FXrVoFZ2dnBAQEwMXFBfX19diyZQvs7e2h1+sBAAkJCVizZg2sra0RFBSEO3fuoKSkBNevX0dsbKwSKyUlBSNGjICPjw/eeustXL9+HStWrOjDb4GI6N566itHjhyJ4cOHY+XKldi6dSvs7Oxw5MgRZGdnIzMzs9u48fHxaG5uxuzZs+Hu7o6GhgZs374dra2tmDFjBgBg8+bNmDNnDtzc3LBo0SIMGjQIFRUVqKqqwpYtW5RYBw8exDPPPIMpU6Zg7969OHnyJHbs2NH7Rt7nrTSiRwpAl5+dO3eqym3cuFFcXV1Vk3DvJSMjQ2bPni2PP/646HQ6cXZ2lpCQEOVecIe9e/fKmDFjRKfTia2trUydOlUOHTokIt/Ogdm3b5+MHz9edDqd+Pr6Sm5ubp+0nYiot3rTV549e1YWLlwoDg4OYmZmJqNGjer0s+rvy83NlZCQEHF1dRWdTieOjo4SFBQkRUVFqnLHjx+XSZMmiampqVhZWcn48ePlvffeU9UvJSVFZsyYIcbGxuLh4SHp6en31UbN/wIR0QOqq6uDp6cnysrKMGbMmEddHSKiHy2NRoPDhw8jODj4B8fgc2CIiIjI4DCBISIiIoPDW0hERERkcDgCQ0RERAaHCQwREREZHCYwNGAkJSVh3LhxsLS0hIODA4KDg1FbW6sqc/v2bURFRcHOzg4WFhYICQnB119/rWyvqKjAkiVL4OrqClNTU/j4+CA5ObnbY544cQJGRkb81RER0UPGBIYGjIKCAkRFRaG4uBjZ2dlobW3FzJkzladDAsC6devwl7/8BQcPHkRBQQG++uor1eOuS0tL4eDggD179uD06dN47bXXsHHjRrzzzjudjtfQ0IDQ0FAEBgY+lPYREdG3OImXBqxr167BwcEBBQUFmDp1Km7cuAF7e3vs27cPixYtAgCcOXMGPj4++OyzzzBx4sQu40RFRaGmpga5ubmq9S+88AJGjBgBrVaLI0eOoLy8vL+bRERE/8MRGBqwbty4AQAYMmQIgLujK62trfjpT3+qlBk5ciTc3Nzw2Wef3TNOR4wOO3fuxIULFxAXF9cPNSciop7wXUg0ILW3tyMmJgaTJ0+Gv78/AODKlSvQ6XSwsbFRlXV0dFTeE/J9f/vb35Ceno5jx44p686dO4dXX30VRUVFMDLinxAR0aPA3pcGpKioKFRVVeGvf/3rD45RVVWF+fPnIy4uDjNnzgQAtLW1YenSpUhISICXl1dfVZeIiO4TExgacKKjo5GZmYnCwkK4uLgo652cnNDS0oKGhgbVKMzXX38NJycnVYzq6moEBgbipZdewuuvv66sv3nzJkpKSlBWVobo6GgAd0d7RARGRkb45JNPEBAQ0L8NJCIiJjA0cIgIVq9ejcOHDyM/Px+enp6q7U8//TQGDx6MnJwchISEAABqa2tx+fJl6PV6pdzp06cREBCAsLAwJCYmqmJYWVmhsrJStS41NRW5ubnIyMjodEwiIuofTGBowIiKisK+fftw9OhRWFpaKvNarK2tYWpqCmtra0RERCA2NhZDhgyBlZUVVq9eDb1er/wCqaqqCgEBAZg1axZiY2OVGFqtFvb29hg0aJAyp6aDg4MDTExMOq0nIqL+wwSGBox3330XADB9+nTV+p07dyI8PBwA8NZbb2HQoEEICQnBnTt3MGvWLKSmpiplMzIycO3aNezZswd79uxR1ru7u6Ourq6/m0BERL3E58AQERGRweFzYIiIiMjgMIEhIiIig8MEhoiIiAwOExgiIiIyOExgiIiIyOAwgSEiIiKDwwSGiIiIDA4TGKIBKD8/HxqNBg0NDY+6KkRE/YIJDNEAMH36dMTExCjLkyZNQn19PaytrR9ZnZhEEVF/4qsEiAYgnU7X6Q3bREQDCUdgiAxceHg4CgoKkJycDI1GA41Gg127dqlGP3bt2gUbGxtkZmbC29sbZmZmWLRoEZqbm7F79254eHjA1tYWa9asQVtbmxL7zp07ePnllzF06FCYm5tjwoQJyM/PV7ZfunQJc+fOha2tLczNzeHn54esrCzU1dXhJz/5CQDA1tYWGo1GeR/V8ePHMWXKFNjY2MDOzg5z5szBF198ocSsq6uDRqPBgQMH8Oyzz8LU1BTjxo3D2bNn8fnnn+OZZ56BhYUFnnvuOVy7dk31PQQHByMhIQH29vawsrJCZGQkWlpa+u/LJ6JHhiMwRAYuOTkZZ8+ehb+/P375y18CAE6fPt2pXHNzM7Zv3479+/fj5s2bWLhwIRYsWAAbGxtkZWXhwoULCAkJweTJk7F48WIAQHR0NKqrq7F//344Ozvj8OHDCAoKQmVlJUaMGIGoqCi0tLSgsLAQ5ubmqK6uhoWFBVxdXfHRRx8hJCQEtbW1sLKygqmpKQCgqakJsbGxGDVqFBobG7F582YsWLAA5eXlGDTo22uquLg4/O53v4ObmxtWrFiBpUuXwtLSEsnJyTAzM8Pzzz+PzZs3Ky/xBICcnByYmJggPz8fdXV1WL58Oezs7JCYmNif/wVE9CgIERm8adOmydq1a5XlvLw8ASDXr18XEZGdO3cKADl//rxSZuXKlWJmZiY3b95U1s2aNUtWrlwpIiKXLl0SrVYr//znP1XHCgwMlI0bN4qIyJNPPinx8fFd1un7dejOtWvXBIBUVlaKiMjFixcFgLz//vtKmQ8//FAASE5OjrIuKSlJvL29leWwsDAZMmSINDU1KeveffddsbCwkLa2tnvWgYgMD28hEf2fMDMzw7Bhw5RlR0dHeHh4wMLCQrXu6tWrAIDKykq0tbXBy8sLFhYWyqegoEC55bNmzRps2bIFkydPRlxcHE6dOtVjPc6dO4clS5bgiSeegJWVFTw8PAAAly9fVpUbNWqUql4A8OSTT3ZZ1w6jR4+GmZmZsqzX69HY2Igvv/yyx3oRkWHhLSSi/xODBw9WLWs0mi7Xtbe3AwAaGxuh1WpRWloKrVarKteR9Lz44ouYNWsWjh07hk8++QRJSUnYtm0bVq9e3W095s6dC3d3d6SlpcHZ2Rnt7e3w9/fvNFflu3XTaDRdruuoKxH9/+EIDNEAoNPpVJNv+8LYsWPR1taGq1evYvjw4arPd3/h5OrqisjISBw6dAjr169HWlqaUicAqnp98803qK2txeuvv47AwED4+Pjg+vXrfVbniooK3Lp1S1kuLi5W5uQQ0cDCBIZoAPDw8MDf//531NXV4V//+lefjEx4eXlh2bJlCA0NxaFDh3Dx4kWcPHkSSUlJOHbsGAAgJiYGH3/8MS5evIh//OMfyMvLg4+PDwDA3d0dGo0GmZmZuHbtGhobG2Fraws7Ozu89957OH/+PHJzcxEbG/vAde3Q0tKCiIgIVFdXIysrC3FxcYiOjlZNDiaigYF/1UQDwMsvvwytVgtfX1/Y29t3mk/yQ+3cuROhoaFYv349vL29ERwcjM8//xxubm4A7o6uREVFwcfHB0FBQfDy8kJqaioAYOjQoUhISMCrr74KR0dHJZHYv38/SktL4e/vj3Xr1uE3v/lNn9QVAAIDAzFixAhMnToVixcvxrx58xAfH99n8Ynox0MjIvKoK0FE9KDCw8PR0NCAI0eOPOqqENFDwBEYIiIiMjhMYIiIiMjg8BYSERERGRyOwBAREZHBYQJDREREBocJDBERERkcJjBERERkcJjAEBERkcFhAkNEREQGhwkMERERGRwmMERERGRwmMAQERGRwfkvzQko5Zel5OkAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.plot()" ] } ], "metadata": { "kernelspec": { "display_name": "aenv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.3" } }, "nbformat": 4, "nbformat_minor": 2 }